Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
1.
Bioresour Technol ; : 130916, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823560

ABSTRACT

In this study, modified polyamide fibers were used as biocarriers to enrich dense biofilms in a multi-stage biological contact oxidation reactor (MBCOR) in which partitioned wastewater treatment zone (WTZ) and bioaugmentation zone (BAZ) were established to enhance the removal of methyl orange (MO) and its metabolites while minimizing sludge yields. WTZ exhibited high biomass loading capacity (5.75 ±â€¯0.31 g/g filler), achieving MO removal rate ranging from 68 % to 86 % under different aeration condition within 8 h in which the most dominant genus Chlorobium played an important role. In the BAZ, Pseudoxanthomonas was the dominant genus while carbon starvation stimulated the enrichment of chemoheterotrophy and aerobic_chemoheterotrophy genes thereby enhanced the microbial utilization of cell-released substrates, MO as well as its metabolic intermediates. These results revealed the mechanism bioaugmentation on MBCOR in effectively eliminating both MO and its metabolites.

2.
Polymers (Basel) ; 16(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732729

ABSTRACT

Cellulose-based aerogel has attracted considerable attention for its excellent adsorption capacity, biodegradability, and renewability. However, it is considered eco-unfriendly due to defibrillation of agriculture waste and requires harmful/expensive chemical agents. In this study, cornstalk rind-based aerogel was obtained via the following steps: green H2O2/HAc delignification of cornstalk rind to obtain cellulose fibers, binding with carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) and freeze-drying treatment, and hydrophobic modification with stearic acid. The obtained aerogel showed high compressive strength (200 KPa), which is apparently higher (about 32 kPa) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. Characterization of the obtained aerogel through SEM, water contact angle, etc., showed high porosity (95%), low density (0.0198 g/cm-3), and hydrophobicity (water contact angle, 159°), resulting in excellent n-hexane adsorption capacity (35 g/g), higher (about 29.5 g/g) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. The adsorbed oil was recovered by the extrusion method, and the aerogel showed excellent recyclability in oil adsorption.

3.
Chemosphere ; 360: 142420, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795914

ABSTRACT

The ubiquitousness of per- and polyfluoroalkyl substances (PFAS) is a big concern and PFAS remediation is urgently needed such as via degradation. While previous studies have explored ultrasonic degradation of PFAS, work evaluating the operational parameters is rare, especially concerning real wastes such as aqueous film-forming foam (AFFF) and foam fractionate (FF). This study investigates the key operational parameters affecting the degradation efficiency of PFAS, encompassing ultrasonication frequency (580-1144 kHz), power intensity (125-187.5 W), initial concentration (0.08-40 ppm), treatment duration (0.5-3 h), sample volume (100-500 mL), and PFAS structure (perfluorooctanoic acid or PFOA; perfluorooctane sulfonate or PFOS; 6:2 fluorotelomer sulfonate or 6:2 FTS). The defluorination kinetics is different from the removal/degradation kinetics due to the generation of degradation intermediates, suggesting the complex degradation mechanism, which should be evaluated to close the mass balance effectively. Notably, the optimised ultrasonic system achieves ∼125%/∼115% defluorination in AFFF/FF example wastes (compared to ∼65%/∼97% removal) despite their complex composition and the involvement of total oxidizable precursor (TOP) assay. In the meantime, a few new PFAS are detected in the post-treatments, including perfluorohexane sulfonic acid (PFHxS) and 10:2 fluorotelomer sulfonate (10:2 FTS) in the AFFF, and perfluorooctane sulfonamide (FOSA) and 8:2 fluorotelomer sulfonate (8:2 FTS) in the FF, again suggesting the complex degradation mechanism. Overall, ultrasonication is effective to degrade PFAS real example wastes, advancing its potential for scale-up applications.

4.
Bioresour Technol ; 402: 130806, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718906

ABSTRACT

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Subject(s)
Microcystis , Oxidation-Reduction , Reactive Oxygen Species , Microcystis/drug effects , Microcystis/metabolism , Reactive Oxygen Species/metabolism , Sulfates/metabolism , Sulfates/pharmacology , Sulfates/chemistry , Peracetic Acid/pharmacology , Hot Temperature , Hydroxyl Radical/metabolism , Kinetics
5.
Molecules ; 29(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38611837

ABSTRACT

Silver (Ag) nanowires, as an important one-dimensional (1D) nanomaterial, have garnered wide attention, owing to their applications in electronics, optoelectronics, sensors, and other fields. In this study, an alternative hydrothermal route was developed to synthesize Ag nanowires via modified reduction of Ag+. Silver sulfamate plays an important role in the formation of Ag nanowires via controlled release of free Ag+. Results of controlled experiments and characterizations such as UV-vis spectroscopy, FTIR, XPS, and 1H NMR revealed that sulfamic acid does not function as a reductant, supporting by the generation of free Ag+ instead of Ag nanostructures in hydrothermally treated silver sulfamate solution. The initial reduction of Ag+ was induced by the combination of poly (vinylpyrrolidone) (PVP) end group and degradation products. This phenomenon was supported by abundant free Ag+ in the mixed preheated silver sulfamatic and preheated PVP aqueous solutions, indicating a second and distinct Ag+ autocatalytic reduction. Thus, the roles of different reagents and Ag+ reduction must be studied for nanomaterial syntheses.

6.
Bioresour Technol ; 397: 130452, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354963

ABSTRACT

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BN3Z0.5BC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BN3Z0.5BC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.


Subject(s)
Charcoal , Peracetic Acid , Water Pollutants, Chemical , Oxidation-Reduction , Water Pollutants, Chemical/chemistry , Free Radicals , Anti-Bacterial Agents
7.
Environ Sci Technol ; 58(10): 4824-4836, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38408018

ABSTRACT

Electrochemically converting nitrate, a widely distributed nitrogen contaminant, into harmless N2 is a feasible and environmentally friendly route to close the anthropogenic nitrogen-based cycle. However, it is currently hindered by sluggish kinetics and low N2 selectivity, as well as scarce attention to reactor configuration. Here, we report a flow-through zero-gap electrochemical reactor that shows a high performance of nitrate reduction with 100% conversion and 80.36% selectivity of desired N2 in the chlorine-free system at 100 mg-N·L-1 NO3- while maintaining a rapid reduction kinetics of 0.07676 min-1. More importantly, the mass transport and current utilization efficiency are significantly improved by shortening the inter-electrode distance, especially in the zero-gap electrocatalytic system where the current efficiency reached 50.15% at 5 mA·cm-2. Detailed characterizations demonstrated that during the electroreduction process, partial Cu(OH)2 on the cathode surface was reconstructed into stable Cu/Cu2O as the active phase for efficient nitrate reduction. In situ characterizations revealed that the highly selective *NO to *N conversion and the N-N coupling step played crucial roles during the selective reduction of NO3- to N2 in the zero-gap electrochemical system. In addition, theoretical calculations demonstrated that improving the key intermediate *N coverage could effectively facilitate the N-N coupling step, thereby promoting N2 selectivity. Moreover, the environmental and economic benefits and long-term stability shown by the treatment of real nitrate-containing wastewater make our proposed electrocatalytic system more attractive for practical applications.


Subject(s)
Nitrates , Wastewater , Nitrates/chemistry , Electrodes , Nitrogen/analysis , Nitrogen/chemistry , Kinetics
8.
Environ Pollut ; 344: 123223, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38158009

ABSTRACT

Electrospun nanofiber membranes have emerged as a novel catalyst, demonstrating exceptional efficacy in advanced oxidation processes (AOPs) for the degradation of organic pollutants. Their superior performance can be attributed to their substantial specific surface area, high porosity, ease of modification, rapid recovery, and unparalleled chemical stability. This paper aims to comprehensively explore the progressive applications and underlying mechanisms of electrospun nanofibers in AOPs, which include Fenton-like processes, photocatalysis, catalytic ozonation, and persulfate oxidation. A detailed discussion on the mechanism and efficiency of the catalytic process, which is influenced by the primary components of the electrospun catalyst, is presented. Additionally, the paper examines how concentration, viscosity, and molecular weight affect the characteristics of the spinning materials and seeks to provide a thorough understanding of electrospinning technology to enhance water treatment methods. The review proposes that electrospun nanofiber membranes hold significant potential for enhancing water treatment processes using advanced oxidation methods. This is attributed to their advantageous properties and the tunable nature of the electrospinning process, paving the way for advancements in water treatment through AOPs.


Subject(s)
Nanofibers , Water Pollutants, Chemical , Water Purification , Nanofibers/chemistry , Oxidation-Reduction , Water Purification/methods , Water Pollutants, Chemical/chemistry
9.
Plant Physiol Biochem ; 206: 108140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134738

ABSTRACT

Carboxylesterase (CXE) is a class of hydrolases that contain an α/ß folding domain, which plays critical roles in plant growth, development, and stress responses. Based on the genomic and transcriptomic data of Salvia miltiorrhiza, the SmCXE family was systematically analyzed using bioinformatics. The results revealed 34 SmCXE family members in S. miltiorrhiza, and the SmCXE family could be divided into five groups (Group I, Group II, Group III, Group IV, and Group V). Cis-regulatory elements indicated that the SmCXE promoter region contained tissue-specific and development-related, hormone-related, stress-related, and photoresponsive elements. Transcriptome analysis revealed that the expression levels of SmCXE2 were highest in roots and flowers (SmCXE8 was highest in stems and SmCXE19 was highest in leaves). Further, two GA receptors SmCXE1 (SmGID1A) and SmCXE2 (SmGID1B) were isolated from the SmCXE family, which are homologous to other plants. SmGID1A and SmGID1B have conserved HGGSF motifs and active amino acid sites (Ser-Asp-Val/IIe), which are required to maintain their GA-binding activities. SmGID1A and SmGID1B were significantly responsive to gibberellic acid (GA3) and methyl jasmonate (MeJA) treatment. A subcellular assay revealed that SmCXE1 and SmCXE2 resided within the nucleus. SmGID1B can interact with SmDELLAs regardless of whether GA3 exists, whereas SmGID1A can only interact with SmDELLAs in the presence of GA3. A Further assay showed that the GRAS domain mediated the interactions between SmGID1s and SmDELLAs. This study lays a foundation for further elucidating the role of SmCXE in the growth and development of S. miltiorrhiza.


Subject(s)
Salvia miltiorrhiza , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Carboxylesterase/genetics , Carboxylesterase/metabolism , Plant Proteins/metabolism , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant
10.
Microb Pathog ; 187: 106517, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159617

ABSTRACT

Atractylodes chinensis is one of the most commonly used bulk herbs in East Asia; however, root rot can seriously affect its quality and yields. In contrast to chemical pesticides, biological control strategies are environmentally compatible and safe. For this study, 68 antagonistic bacterial strains were isolated from the rhizospheres of healthy Atractylodes chinensis. Strain SY42 exhibited the most potent fungicidal activities, with inhibition rates against F. oxysporum, F. solani, and F. redolens of 67.07 %, 63.40 % and 68.45 %, respectively. Through morphological observation and molecular characterization, strain SY42 was identified as Paenibacillus polymyxa. The volatile organic components (VOCs) produced by SY42 effectively inhibited the mycelial growth of pathogenic fungi through diffusion. SY42 significantly inhibited the germination of pathogenic fungal spores. Following co-culturing with SY42, the mycelium of the pathogenic fungus was deformed, folded, and even ruptured. SY42 could produce cellulases and proteases to degrade fungal cell walls. Pot experiments demonstrated the excellent biocontrol efficacy of SY42. This study revealed that P. polymyxa SY42 inhibited pathogenic fungi through multiple mechanisms, which verified its utility as a biocontrol agent for the control of A. chinensis root rot.


Subject(s)
Atractylodes , Fusarium , Paenibacillus polymyxa , Plant Diseases/prevention & control , Plant Diseases/microbiology , Mycelium
11.
Int J Mol Sci ; 24(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894883

ABSTRACT

Basic leucine zipper (bZIP) transcription factors (TFs) are one of the largest families involved in plant physiological processes such as biotic and abiotic responses, growth, and development, etc. In this study, 66 members of the bZIP family were identified in Bletilla striata, which were divided into 10 groups based on their phylogenetic relationships with AtbZIPs. A structural analysis of BsbZIPs revealed significant intron-exon differences among BsbZIPs. A total of 63 bZIP genes were distributed across 16 chromosomes in B. striata. The tissue-specific and germination stage expression patterns of BsbZIPs were based on RNA-seq. Stress-responsive expression analysis revealed that partial BsbZIPs were highly expressed under low temperatures, wounding, oxidative stress, and GA treatments. Furthermore, subcellular localization studies indicated that BsbZIP13 was localized in the nucleus. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays suggested that BsbZIP13 could interact with multiple BsSnRK2s. The results of this study provide insightful data regarding bZIP TF as one of the stress response regulators in B. striata, while providing a theoretical basis for transgenic and functional studies of the bZIP gene family in B. striata.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Stress, Physiological , Phylogeny , Stress, Physiological/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Oxidative Stress , Introns/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling
12.
Chemosphere ; 343: 140267, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37758090

ABSTRACT

Tris (2-butoxyethyl) phosphate (TBOEP) has gained significant attention due to its widespread presence and potential toxicity in the environment. In this study, the degradation of TBOEP in aquatic media was investigated using electrochemical oxidation technology. The anode Ti/SnO2-Sb/La-PbO2 demonstrated effective degradation performance, with a reaction constant (k) of 0.6927 min-1 and energy consumption of 1.24 kW h/m3 at 10 mA/cm2. CV tests, EPR tests, and quenching experiments confirmed that indirect degradation is the main degradation mechanism and ·OH radicals were the predominant reactive species, accounting for up to 93.8%. The presence of various factors, including Cl-, NO3-, HCO3- and humic acid (HA), inhibited the degradation of TBOEP, with the inhibitory effect dependent on the concentrations. A total of 13 intermediates were identified using UPLC-Orbitrap-MS/MS, and subsequent reactions led to their further degradation. Two main degradation pathways involving bond breaking, hydroxylation, and oxidation were proposed. Both Flow cytometry and the ECOSAR predictive model indicated that the intermediates exhibited lower toxic than the parent compound, resulting in a high detoxification rate of 95.9% for TBOEP. Although the impact of TBOEP on the phylum-level microbial community composition was found to be insignificant, substantial alterations in bacterial abundance were noted when examining the genus level. The dominant genus Methylotenera, representing 17.4% in the control group, decreased to 6.9% in the presence of TBOEP and slightly increased to 8.7% in the 4-min exposure group of degradation products. Electrochemical oxidation demonstrated its effectiveness for the degradation and detoxification of TBOEP in aqueous solutions, while it is essential to consider the potential impact of degradation products on sediment microbial communities.


Subject(s)
Phosphates , Water Pollutants, Chemical , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Organophosphorus Compounds/toxicity , Oxidation-Reduction , Electrodes
13.
Int J Biol Macromol ; 253(Pt 4): 127044, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37742891

ABSTRACT

Atractylodes lancea (Thunb.) is a perennial medicinal herb, with its dry rhizomes are rich in various sesquiterpenoids and polyacetylenes components (including atractylodin, atractylon and ß-eudesmol). However, the contents of these compounds are various and germplasms specific, and the mechanisms of biosynthesis in A. lancea are still unknown. In this study, we identified the differentially expressed candidate genes and metabolites involved in the biosynthesis of sesquiterpenoids and polyacetylenes, and speculated the anabolic pathways of these pharmaceutical components by transcriptome and metabolomic analysis. In the sesquiterpenoids biosynthesis, a total of 28 differentially expressed genes (DEGs) and 6 differentially expressed metabolites (DEMs) were identified. The beta-Selinene is likely to play a role in the synthesis of atractylon and ß-eudesmol. Additionally, the polyacetylenes biosynthesis showed the presence of 3 DEGs and 4 DEMs. Notably, some fatty acid desaturase (FAB2 and FAD2) significantly down-regulated in polyacetylenes biosynthesis. The gamma-Linolenic acid is likely involved in the biosynthesis of polyacetylenes and thus further synthesis of atractylodin. Overall, these studies have investigated the biosynthetic pathways of atractylodin, atractylon and ß-eudesmol in A. lancea for the first time, and present potential new anchor points for further exploration of sesquiterpenoids and polyacetylenes compound biosynthesis pathways in A. lancea.


Subject(s)
Atractylodes , Sesquiterpenes , Atractylodes/genetics , Atractylodes/metabolism , Polyacetylene Polymer/metabolism , Transcriptome , Sesquiterpenes/metabolism , Metabolome
14.
Environ Pollut ; 337: 122510, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37689132

ABSTRACT

Microplastics are small plastic fragments that are of increasing concern due to their potential impacts on the environment and human health. The source of microplastics is not completely clear and might originate in daily lives such as from toothbrushes. When toothbrushes are used to clean teeth, small plastic debris and fragments can be potentially released into mouths directly or environment indirectly. This study aims to examine the release of microplastics from toothbrushes, using Raman imaging to identify and visualise the plastic debris with an increased signal-noise ratio via hyper-spectrum analysis. Using algorithms to convert the hyper-spectrum to an image, the plastic can be distinguished from the co-formulated titanium oxide particles that are not uniformly distributed along the plastics. The non-uniform distribution can lead to the bias results if a single spectrum analysis is conducted at one position rather than imaging analysis to scan an area. The potential false image originating from the off-focal position for the confocal Raman is overcome using the terrain map to guide the Raman imaging. The imaging analysis balancing between the low magnification to capture the overview and the high magnification to test the details is also discussed. While the release amount of microplastics from the toothbrush is estimated at thousands daily with the expected variation, the results of this study have confirmed the release of microplastics in daily lives. The imaging analysis approach along with algorithm can help to identify the chemical elements of microplastics from the complex background, which can benefit the further research on microplastics towards risk assessment and remediation.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/analysis , Plastics/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Algorithms , Spectrum Analysis, Raman
15.
Chemosphere ; 343: 140211, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739134

ABSTRACT

Due to the incomplete elimination by traditional wastewater treatment, antibiotics are becoming emerging contaminants, which are proved to be ubiquitous and promote bacterial resistance in the aquatic systems. Antibiotic pollution has raised particular concerns, calling for improved methods to clean wastewater and water. Photo-assisted advanced oxidation processes (AOPs) have attracted increasing attention because of the fast reaction rate, high oxidation capacity and low selectivity to remove antibiotics from wastewater. On the basis of latest literature, we found some new breakthroughs in the degradation mechanisms of antibiotic micropollutants with respect to the AOPs. Therefore, this paper summarizes and highlights the degradation kinetics, pathways and mechanisms of antibiotics degraded by the photo-assisted AOPs, including the UV/O3 process, photo-Fenton technology, and photocatalysis. In the processes, functional groups are attacked by hydroxyl radicals, and major structures are destroyed subsequently, which depends on the classes of antibiotics. Meanwhile, their basic principles, current applications and influencing factors are briefly discussed. The main challenges, prospects, and recommendations for the improvement of photo-assisted AOPs are proposed to better remove antibiotics from wastewater.

16.
Bioresour Technol ; 387: 129536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37544549

ABSTRACT

Corn straw and sludge-derived biochar composite (BC) loaded with CoFe2O4 was successfully prepared to activate peracetic acid (PAA) for efficient degradation of tetracycline hydrochloride (TCH). Within 60 s, 96 % TCH removal efficiency was achieved through a non-free radical degradation pathway, primarily driven by singlet oxygen (1O2). The mechanism involves the electron-rich groups on the biochar surface, which facilitate the cleavage of the PAA OO bond to generate •O2-/1O2 and provide electrons to induce the formation of high-valent Fe(IV) and Co(IV). The oxygen vacancies on the surface of the CoFe2O4-loaded biochar composite (CFB-2) contribute partially to 1O2 production through their transformation into a metastable intermediate with dissolved oxygen. Moreover, elevated temperatures further enhance PAA activation by CFB-2, leading to increased reactive oxygen species (ROS) production through PAA decomposition, thereby promoting TCH removal. This study offers new insights into the catalysis of metal-loaded biochar for efficient TCH degradation via non-free radical generation.


Subject(s)
Oxygen , Peracetic Acid , Reactive Oxygen Species , Tetracycline , Anti-Bacterial Agents , Charcoal
17.
Chemosphere ; 337: 139415, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37414301

ABSTRACT

The present study investigates the extracellular electron transfer (EET)-dependent anammox process as a promising approach for sustainable wastewater treatment. The study examines the performance and metabolic pathway of the EET-dependent anammox process in comparison to the nitrite-dependent anammox process. The EET-dependent reactor successfully achieved nitrogen removal with a maximum removal efficiency of 93.2%, although it exhibited a lower ability to sustain high nitrogen removal load when compared to the nitrite-dependent anammox process, which poses opportunity and challenge for ammonia-wastewater treatment under applied voltage conditions. Nitrite was identified as a critical factor responsible for the changes in microbial community structure, resulting in a significant reduction in nitrogen removal load in the absence of nitrite. The study further suggests that the Candidatus Kuenenia species could dominate the EET-dependent anammox process, while nitrifying and denitrifying bacteria also contribute to the nitrogen removal in this system.


Subject(s)
Denitrification , Wastewater , Oxidation-Reduction , Nitrogen/metabolism , Nitrites/metabolism , Anaerobic Ammonia Oxidation , Electrons , Bioreactors/microbiology , Bacteria/metabolism , Sewage/microbiology
18.
Environ Res ; 231(Pt 2): 116192, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37201701

ABSTRACT

The response characteristic and performance stabilization of anammox process under the stress of the potential organic pollutants support the application of ammonia-nitrogen wastewater treatment. In the present study, nitrogen removal performance was significantly suppressed with the addition of 4-chlorophenol. The activity of anammox process was inhibited by 14.23% (0.1 mg/L), 20.54% (1 mg/L) and 78.15% (10 mg/L), respectively. Metagenomic analysis revealed a significant decrease in the abundance of KEGG pathways associated with carbohydrate and amino acid metabolism with increasing 4-chlorophenol concentration. Metabolic pathway profiles suggest that putrescine is down-regulated at high 4-chlorophenol stress due to inhibition of nitrogen metabolism processes, while it is up-regulated to reduce oxidative damage. In addition, the presence of 4-chlorophenol induced an enhancement of EPS and bacterial debris decomposition, and a partial conversion of 4-chlorophenol to p-nitrophenol. This study unravels the mechanism of effect on anammox consortia in response to 4-CP, which could provide supplementary to facilitate its full-scale application.


Subject(s)
Denitrification , Wastewater , Anaerobic Ammonia Oxidation , Nitrogen/metabolism , Oxidation-Reduction , Bioreactors/microbiology , Sewage
19.
Carbohydr Polym ; 313: 120781, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37182941

ABSTRACT

Liver fibrosis has proven to be the main predisposing factor for liver cirrhosis and liver cancer; however, an effective treatment remains elusive. Polysaccharides, with low toxicity and a wide range of bioactivities, are strong potential candidates for anti-hepatic fibrosis applications. For this study, a new low molecular weight neutral polysaccharide (B. striata glucomannan (BSP)) was extracted and purified from Bletilla striata. The structure of BSP was characterized and its activities for alleviating liver fibrosis in vivo were further evaluated. The results revealed that the structural unit of BSP was likely →4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-2ace-Manp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-Glcp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-Manp-(1 â†’ 4)-ß-D-3ace-Manp-(1→, with a molecular weight of only 58.5 kDa. Additionally, BSP was observed to attenuate the passive impacts of liver fibrosis in a manner closely related to TLR2/TLR4-MyD88-NF-κB signaling pathway conduction. In summary, the results of this study provide theoretical foundations for the potential applications of BSP as an anti-liver fibrosis platform.


Subject(s)
Orchidaceae , Polysaccharides , Humans , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Polysaccharides/chemistry , Orchidaceae/chemistry , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Fibrosis
20.
J Hazard Mater ; 456: 131642, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37236101

ABSTRACT

Sulfamethazine (SMZ) is widely present in the environment and can cause severe allergic reactions and cancer in humans. Accurate and facile monitoring of SMZ is crucial for maintaining environmental safety, ecological balance, and human health. In this work, a real-time and label-free surface plasmon resonance (SPR) sensor was devised using a two-dimensional metal-organic framework with superior photoelectric performance as an SPR sensitizer. The supramolecular probe was incorporated at the sensing interface, allowing for the specific capture of SMZ from other analogous antibiotics through host-guest recognition. The intrinsic mechanism of the specific interaction of the supramolecular probe-SMZ was elucidated through the SPR selectivity test in combination with analysis by density functional theory, including p-π conjugation, size effect, electrostatic interaction, π-π stacking, and hydrophobic interaction. This method facilitates a facile and ultrasensitive detection of SMZ with a limit of detection of 75.54 pM. The accurate detection of SMZ in six environmental samples demonstrates the potential practical application of the sensor. Leveraging the specific recognition of supramolecular probes, this direct and simple approach offers a novel pathway for the development of novel SPR biosensors with outstanding sensitivity.


Subject(s)
Biosensing Techniques , Surface Plasmon Resonance , Humans , Sulfamethazine/chemistry , Biosensing Techniques/methods , Anti-Bacterial Agents , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...