Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(5): 2043-2058, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38515251

ABSTRACT

MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.


Subject(s)
Adaptation, Physiological , Droughts , Gene Expression Regulation, Plant , Glutathione Transferase , MicroRNAs , Plant Proteins , Populus , Reactive Oxygen Species , Populus/genetics , Populus/physiology , Populus/enzymology , MicroRNAs/genetics , MicroRNAs/metabolism , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Adaptation, Physiological/genetics , Plants, Genetically Modified , Stress, Physiological/genetics , Free Radical Scavengers/metabolism , Base Sequence , Genes, Plant , Promoter Regions, Genetic/genetics , Drought Resistance
2.
BMC Genomics ; 24(1): 473, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37605104

ABSTRACT

BACKGROUND: Drought stress is a prevalent abiotic stress that significantly hinders the growth and development of plants. According to studies, ß-aminobutyric acid (BABA) can influence the ABA pathway through the AtIBI1 receptor gene to enhance cold resistance in Arabidopsis. However, the Aspartate tRNA-synthetase (AspRS) gene family, which acts as the receptor for BABA, has not yet been investigated in poplar. Particularly, it is uncertain how the AspRS gene family (PtrIBIs)r can resist drought stress after administering various concentrations of BABA to poplar. RESULTS: In this study, we have identified 12 AspRS family genes and noted that poplar acquired four PtrIBI pairs through whole genome duplication (WGD). We conducted cis-action element analysis and found a significant number of stress-related action elements on different PtrIBI genes promoters. The expression of most PtrIBI genes was up-regulated under beetle and mechanical damage stresses, indicating their potential role in responding to leaf damage stress. Our results suggest that a 50 mM BABA treatment can alleviate the damage caused by drought stress in plants. Additionally, via transcriptome sequencing, we observed that the partial up-regulation of BABA receptor genes, PtrIBI2/4/6/8/11, in poplars after drought treatment. We hypothesize that poplar responds to drought stress through the BABA-PtrIBIs-PtrVOZ coordinated ABA signaling pathway. Our research provides molecular evidence for understanding how plants respond to drought stress through external application of BABA. CONCLUSIONS: In summary, our study conducted genome-wide analysis of the AspRS family of P. trichocarpa and identified 12 PtrIBI genes. We utilized genomics and bioinformatics to determine various characteristics of PtrIBIs such as chromosomal localization, evolutionary tree, gene structure, gene doubling, promoter cis-elements, and expression profiles. Our study found that certain PtrIBI genes are regulated by drought, beetle, and mechanical damage implying their crucial role in enhancing poplar stress tolerance. Additionally, we observed that external application of low concentrations of BABA increased plant drought resistance under drought stress. Through the BABA-PtrIBIs-PtrVOZ signaling module, poplar plants were able to transduce ABA signaling and regulate their response to drought stress. These results suggest that the PtrIBI genes in poplar have the potential to improve drought tolerance in plants through the topical application of low concentrations of BABA.


Subject(s)
Arabidopsis , Aspartate-tRNA Ligase , Coleoptera , Animals , Drought Resistance , Signal Transduction/genetics , Arabidopsis/genetics , RNA, Transfer/genetics
3.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901852

ABSTRACT

Nuclear Factor-Y (NF-Y), composed of three subunits NF-YA, NF-YB and NF-YC, exists in most of the eukaryotes and is relatively conservative in evolution. As compared to animals and fungi, the number of NF-Y subunits has significantly expanded in higher plants. The NF-Y complex regulates the expression of target genes by directly binding the promoter CCAAT box or by physical interaction and mediating the binding of a transcriptional activator or inhibitor. NF-Y plays an important role at various stages of plant growth and development, especially in response to stress, which attracted many researchers to explore. Herein, we have reviewed the structural characteristics and mechanism of function of NF-Y subunits, summarized the latest research on NF-Y involved in the response to abiotic stresses, including drought, salt, nutrient and temperature, and elaborated the critical role of NF-Y in these different abiotic stresses. Based on the summary above, we have prospected the potential research on NF-Y in response to plant abiotic stresses and discussed the difficulties that may be faced in order to provide a reference for the in-depth analysis of the function of NF-Y transcription factors and an in-depth study of plant responses to abiotic stress.


Subject(s)
Gene Expression Regulation , Transcription Factors , Transcription Factors/metabolism , Promoter Regions, Genetic , Stress, Physiological/genetics , CCAAT-Binding Factor/genetics
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902250

ABSTRACT

F-box proteins are important components of eukaryotic SCF E3 ubiquitin ligase complexes, which specifically determine protein substrate proteasomal degradation during plant growth and development, as well as biotic and abiotic stress. It has been found that the FBA (F-box associated) protein family is one of the largest subgroups of the widely prevalent F-box family and plays significant roles in plant development and stress response. However, the FBA gene family in poplar has not been systematically studied to date. In this study, a total of 337 F-box candidate genes were discovered based on the fourth-generation genome resequencing of P. trichocarpa. The domain analysis and classification of candidate genes revealed that 74 of these candidate genes belong to the FBA protein family. The poplar F-box genes have undergone multiple gene replication events, particularly in the FBA subfamily, and their evolution can be attributed to genome-wide duplication (WGD) and tandem duplication (TD). In addition, we investigated the P. trichocarpa FBA subfamily using the PlantGenIE database and quantitative real-time PCR (qRT-PCR); the results showed that they are expressed in the cambium, phloem and mature tissues, but rarely expressed in young leaves and flowers. Moreover, they are also widely involved in the drought stress response. At last, we selected and cloned PtrFBA60 for physiological function analysis and found that it played an important role in coping with drought stress. Taken together, the family analysis of FBA genes in P. trichocarpa provides a new opportunity for the identification of P. trichocarpa candidate FBA genes and elucidation of their functions in growth, development and stress response, thus demonstrating their utility in the improvement of P. trichocarpa.


Subject(s)
F-Box Proteins , Multigene Family , Droughts , Genome, Plant , Genes, Plant , F-Box Proteins/genetics , Stress, Physiological/genetics , Phylogeny , Plant Proteins/genetics , Gene Expression Regulation, Plant
5.
Int J Biol Macromol ; 224: 1524-1540, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36441079

ABSTRACT

Autophagy is the process by which intracellular components are delivered to lysosomes or vacuoles for degradation and recycling, which can promote the tolerance of organisms to biotic/abiotic stresses. However, autophagy-related genes (ATG) are not well studied in woody plants. Here, 48 ATG genes were identified in the poplar genome and divided into 14 subfamilies according to the phylogenetic tree. Collinearity analysis showed that 26 pairs of genes were derived by segmental duplication in poplars. The isogenous gene pairs of the ATG family between P. trichocarpa and other six species were analyzed by synteny analysis. Moreover, the ATG promoters contain a large number of phytohormone response elements and stress-response elements. Both phytohormone and salt treatments can induce the expression of PagATG18 subfamily genes. Overexpression of PagATG18a significantly improved the salt tolerance of poplar and reducing the oxidative damage of the membrane. Further research verified that PagATG18a interacted with the light-harvesting complex LHCB1 and APX2, indicating PagATG18a might be involved in regulating photosynthesis and antioxidant activity under stress. This study provides valuable information for further research on the functional characteristics of ATG genes in poplar and the theoretical basis for poplar stress resistance breeding.


Subject(s)
Populus , Salt Tolerance , Salt Tolerance/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Phylogeny , Plant Growth Regulators/metabolism , Plant Breeding , Stress, Physiological/genetics , Autophagy , Gene Expression Regulation, Plant , Populus/genetics
6.
Tree Physiol ; 43(1): 102-117, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36074523

ABSTRACT

Drought is one of the major limiting factors in the growth of terrestrial plants. Abscisic acid (ABA) and pyrabactin resistance 1/prabactin resistance-1 like/regulatory components of ABA receptors (PYR/PYL/RCARs) play a key role in response to drought stress. However, the underlying mechanisms of this control remain largely elusive in trees. In this study, PePYL4, a potential ortholog of the PYR/PYL/RCARs gene, was cloned from Populus euphratica. It was localized in the cytoplasm and nucleus, induced by ABA, osmotic and dehydration treatments. To study the potential biological functions of PePYL4, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B38') overexpressing PePYL4 were generated. PePYL4 overexpression significantly increased ABA sensitivity and reduced stomatal aperture. Compared with wild-type plants, transgenic plants had higher water-use efficiency (WUE) and lower transpiration. When exposed to drought stress, PePYL4 overexpression plants maintained higher photosynthetic activity and accumulated more biomass. Moreover, overexpression of PePYL4 improved antioxidant enzyme activity and ascorbate content to accelerate reactive oxygen species scavenging. Meanwhile, upregulation expression of the stress-related genes also contributed to improving the drought tolerance of transgenic plants. In conclusion, our data suggest that PePYL4 is a promising gene target for regulating WUE and drought tolerance in Populus.


Subject(s)
Populus , Water , Water/metabolism , Drought Resistance , Populus/metabolism , Reactive Oxygen Species/metabolism , Droughts , Plants, Genetically Modified/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
7.
Int J Biol Macromol ; 214: 672-684, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35738343

ABSTRACT

Basic leucine zipper (bZIP) proteins play important roles in responding to biotic and abiotic stresses in plants. However, the molecular mechanisms of plant resistance to pathogens remain largely unclear in poplar. The present study isolated a TGACG-binding (TGA) transcription factor, PeTGA1, from Populus euphratica. PeTGA1 belongs to subgroup D of the bZIP family and was localized to the nucleus. To study the role PeTGA1 plays in response to Colletotrichum gloeosporioides, transgenic triploid white poplars overexpressing PeTGA1 were generated. Results showed that poplars with overexpressed PeTGA1 showed a higher effective defense response to C. gloeosporioides than the wild-type plants. A yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeTGA1 could directly bind to the PeSARD1 (P. euphratica SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1) promoter, an important regulator for salicylic acid biosynthesis. The transactivation assays indicated that PeTGA1 activated the expression of PeSARD1, and PR1 (PATHOGENESIS-RELATED 1), a SA marker gene involved in SA signaling. Subsequently, we observed that the PeTGA1 overexpression lines showed elevated SA levels, thereby resulting in the increased resistance to C. gloeosporioides. Taken together, our results indicated that PeTGA1 may exert a key role in plant immunity not only by targeting PeSARD1 thus participating in the SA biosynthesis pathway but also by involving in SA signaling via activating the expression of PR1.


Subject(s)
Colletotrichum , Populus , Basic-Leucine Zipper Transcription Factors/genetics , Colletotrichum/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Proteins/chemistry , Plants, Genetically Modified/genetics , Populus/genetics , Populus/metabolism , Salicylic Acid/metabolism
8.
Front Plant Sci ; 13: 870970, 2022.
Article in English | MEDLINE | ID: mdl-35620683

ABSTRACT

Chlorophyll (Chl) plays a crucial role in plant photosynthesis. The geranylgeraniol reductase gene (CHLP) participates in the terminal hydrogenation of chlorophyll biosynthesis. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been conducted on CHLP family genes, especially those concerning growth and photosynthesis. In this study, three CHLP genes were identified in Populus. The evolutionary tree indicated that the CHLP family genes were divided into six groups. Moreover, one pair of genes was derived from segmental duplications in Populus. Many elements related to growth were detected by cis-acting element analysis of the promoters of diverse PtrCHLPs. Furthermore, PtrCHLPs exhibit different tissue expression patterns. In addition, PtrCHLP3 is preferentially expressed in the leaves and plays an important role in regulating chlorophyll biosynthesis. Silencing of PtrCHLP3 in poplar resulted in a decrease in chlorophyll synthesis in plants, thus blocking electron transport during photosynthesis. Furthermore, inhibition of PtrCHLP3 expression in poplar can inhibit plant growth through the downregulation of photosynthesis. Ultimately, PtrCHLP3 formed a co-expression network with photosynthesis and chlorophyll biosynthesis-related genes, which synergistically affected the growth and photosynthesis of poplars. Thus, this study provides genetic resources for the improved breeding of fast-growing tree traits.

9.
Int J Biol Macromol ; 204: 76-88, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35124018

ABSTRACT

Cadmium, a toxic heavy metal, seriously affects human health and ecological security. The cation/H+ exchanger (CAX) family is a unique metal transporter that plays a crucial role in Cd acquisition, transfer, and remission in plants. Although there are many studies related to the genome-wide analysis of Populus trichocarpa, little research has been done on the CAX family genes, especially concerning Cd stress. In this study, genome-wide analysis of the Populus CAX family identified seven stress-related CAX genes. The evolutionary tree indicated that the CaCA family genes were grouped into four clusters. Moreover, seven pairs of genes were derived by segmental duplication in poplars. Cis-acting element analysis identified numerous stress-related elements in the promoters of diverse PtrCAXs. Furthermore, some PtrCAXs were up-regulated by drought, beetle, and mechanical damage, indicating their possible function in regulating stress response. Under cadmium stress, all CAX genes in the roots were up-regulated. Our findings suggest that plants may regulate their response to Cd stress through the TF-CAXs module. Comprehensively investigating the CAX family provides a scientific basis for the phytoremediation of heavy metal pollution by Populus.


Subject(s)
Populus , Cadmium/metabolism , Cadmium/toxicity , Cations/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Stress, Physiological/genetics
10.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830215

ABSTRACT

Gibberellic acid-stimulated Arabidopsis (GASA) proteins, as cysteine-rich peptides (CRPs), play roles in development and reproduction and biotic and abiotic stresses. Although the GASA gene family has been identified in plants, the knowledge about GASAs in Populus euphratica, the woody model plant for studying abiotic stress, remains limited. Here, we referenced the well-sequenced Populus trichocarpa genome, and identified the GASAs in the whole genome of P. euphratica and P. trichocarpa. 21 candidate genes in P. trichocarpa and 19 candidate genes in P. euphratica were identified and categorized into three subfamilies by phylogenetic analysis. Most GASAs with signal peptides were located extracellularly. The GASA genes in Populus have experienced multiple gene duplication events, especially in the subfamily A. The evolution of the subfamily A, with the largest number of members, can be attributed to whole-genome duplication (WGD) and tandem duplication (TD). Collinearity analysis showed that WGD genes played a leading role in the evolution of GASA genes subfamily B. The expression patterns of P. trichocarpa and P. euphratica were investigated using the PlantGenIE database and the real-time quantitative PCR (qRT-PCR), respectively. GASA genes in P. trichocarpa and P. euphratica were mainly expressed in young tissues and organs, and almost rarely expressed in mature leaves. GASA genes in P. euphratica leaves were also widely involved in hormone responses and drought stress responses. GUS activity assay showed that PeuGASA15 was widely present in various organs of the plant, especially in vascular bundles, and was induced by auxin and inhibited by mannitol dramatically. In summary, this present study provides a theoretical foundation for further research on the function of GASA genes in P. euphratica.


Subject(s)
Genes, Plant , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Transcriptome , Evolution, Molecular , Extracellular Space/metabolism , Gene Expression/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/drug effects , Indoleacetic Acids/pharmacology , Mannitol/pharmacology , Phylogeny , Plant Growth Regulators/pharmacology , Plant Leaves/genetics , Populus/classification , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction/methods , Up-Regulation/drug effects , Up-Regulation/genetics
11.
Int J Mol Sci ; 22(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298865

ABSTRACT

Poplar is one of the most important tree species in the north temperate zone, but poplar plantations are quite water intensive. We report here that CaMV 35S promoter-driven overexpression of the PdERECTA gene, which is a member of the LRR-RLKs family from Populus nigra × (Populus deltoides × Populus nigra), improves water use efficiency and enhances drought tolerance in triploid white poplar. PdERECTA localizes to the plasma membrane. Overexpression plants showed lower stomatal density and larger stomatal size. The abaxial stomatal density was 24-34% lower and the stomatal size was 12-14% larger in overexpression lines. Reduced stomatal density led to a sharp restriction of transpiration, which was about 18-35% lower than the control line, and instantaneous water use efficiency was around 14-63% higher in overexpression lines under different conditions. These phenotypic changes led to increased drought tolerance. PdERECTA overexpression plants not only survived longer after stopping watering but also performed better when supplied with limited water, as they had better physical and photosynthesis conditions, faster growth rate, and higher biomass accumulation. Taken together, our data suggest that PdERECTA can alter the development pattern of stomata to reduce stomatal density, which then restricts water consumption, conferring enhanced drought tolerance to poplar. This makes PdERECTA trees promising candidates for establishing more water use efficient plantations.


Subject(s)
Plant Proteins/genetics , Plant Stomata/genetics , Populus/genetics , Water/metabolism , Biomass , Cell Membrane/genetics , Cell Membrane/metabolism , Droughts , Gene Expression Regulation, Plant/genetics , Photosynthesis/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Stomata/metabolism , Plant Transpiration/genetics , Populus/metabolism , Promoter Regions, Genetic/genetics
12.
Tree Physiol ; 41(11): 2126-2141, 2021 11 08.
Article in English | MEDLINE | ID: mdl-33960381

ABSTRACT

Phytoremediation technology can help achieve moderate cost and considerable effect with respect to the remediation of heavy metal (HM) pollution in soil and water. Many previous studies have suggested the role of nitrogen (N) in the alleviation of effects of HM on plants. Herein, we sought to determine the molecular mechanisms by which additional N supplementation mitigates cadmium (Cd) toxicity in poplars using a combination of physiological, transcriptomic and phosphoproteomic analyses. The application of N can alleviate the toxicity of Cd to Populus by reducing chlorophyll degradation, maintaining the stability of ions inside and outside the cell membrane and increasing the soluble sugar content. Plant samples from the control, Cd stress and Cd_N treatments were used for an integrated analysis of the transcriptome, as well as for phosphoproteomics analysis. Moreover, 1314 differentially expressed genes and 119 differentially expressed kinase genes were discovered. Application of additional N under Cd stress promoted the phosphorylation process. Furthermore, 51 significantly enriched phosphorylated protein sites and 23 differentially expressed kinases were identified using phosphoproteomic and proteomic analyses. Importantly, transcriptomic and phosphoproteomic analyses jointly determined that the application of N could activate corresponding gene expression [UDP-glucose-dehydrogenase (UGD), GAUT, PME, pectin lyase, UDP-glucose-pyrophosphorylase 2 (UGP2), sucrose phosphate synthase (SPS), SUS and SPP2] and protein phosphorylation (UGP2 and SPS) in the sugar and starch synthesis pathways, which promoted the synthesis of sucrose and soluble sugar and subsequently alleviated the damage caused by Cd.


Subject(s)
Cadmium , Populus , Cadmium/metabolism , Cadmium/toxicity , Nitrogen/metabolism , Plant Roots/metabolism , Populus/metabolism , Proteomics , Starch/metabolism , Sucrose/metabolism
13.
J Exp Bot ; 71(22): 7270-7285, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32822499

ABSTRACT

Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.


Subject(s)
Abscisic Acid , Populus , Droughts , Gene Expression Regulation, Plant , Plant Stomata/genetics , Plants, Genetically Modified/genetics , Populus/genetics
14.
Tree Physiol ; 40(9): 1292-1311, 2020 08 29.
Article in English | MEDLINE | ID: mdl-32334430

ABSTRACT

ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) plays an important role in stress responses, but the transcriptional regulation of ZAT12 in response to abiotic stress remains unclear. In this study, we confirmed that a SALT TOLERANCE ZINC FINGER1 transcription factor from Populus euphratica (PeSTZ1) could regulate the expression of PeZAT12 by dual-luciferase reporter (DLR) assay and electrophoretic mobility shift assay. The expression of PeSTZ1 was rapidly induced by NaCl and hydrogen peroxide (H2O2) treatments. Overexpressing PeSTZ1 in poplar 84K (Populus alba × Populus glandulosa) plant was endowed with a strong tolerance to salt stress. Under salt stress, transgenic poplar exhibited higher expression levels of PeZAT12 and accumulated a larger amount of antioxidant than the wild-type plants. Meanwhile, ASCORBATE PEROXIDASE2 (PeAPX2) can be activated by PeZAT12 and PeSTZ1, promoting the accumulation of cytosolic ascorbate peroxidase (APX) to scavenge reactive oxygen species (ROS) under salt stress. This new regulatory model (PeSTZ1-PeZAT12-PeAPX2) was found in poplar, providing a new idea and insight for the interpretation of poplar resistance. Transgenic poplar reduced the accumulation of ROS, restrained the degradation of chlorophyll and guaranteed the photosynthesis and electron transport system. On the other hand, transgenic poplar slickly adjusted K+/Na+ homeostasis to alleviate salt toxicity in photosynthetic organs of plants under salt stress and then increased biomass accumulation. In summary, PeSTZ1 confers salt stress tolerance by scavenging the accumulation of ROS through regulating the expression of PeZAT12 and PeAPX2 in poplar.


Subject(s)
Populus/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Reactive Oxygen Species , Salt Stress , Salt Tolerance/genetics , Stress, Physiological
15.
Plant Biotechnol J ; 17(11): 2169-2183, 2019 11.
Article in English | MEDLINE | ID: mdl-30977939

ABSTRACT

In the present study, PeSTZ1, a cysteine-2/histidine-2-type zinc finger transcription factor, was isolated from the desert poplar, Populus euphratica, which serves as a model stress adaptation system for trees. PeSTZ1 was preferentially expressed in the young stems and was significantly up-regulated during chilling and freezing treatments. PeSTZ1 was localized to the nucleus and bound specifically to the PeAPX2 promoter. To examine the potential functions of PeSTZ1, we overexpressed it in poplar 84K hybrids (Populus alba × Populus glandulosa), which are known to be stress-sensitive. Upon exposure to freezing stress, transgenic poplars maintained higher photosynthetic activity and dissipated more excess light energy (in the form of heat) than wild-type poplars. Thus, PeSTZ1 functions as a transcription activator to enhance freezing tolerance without sacrificing growth. Under freezing stress, PeSTZ1 acts upstream of ASCORBATE PEROXIDASE2 (PeAPX2) and directly regulates its expression by binding to its promoter. Activated PeAPX2 promotes cytosolic APX that scavenges reactive oxygen species (ROS) under cold stress. PeSTZ1 may operate in parallel with C-REPEAT-BINDING FACTORS to regulate COLD-REGULATED gene expression. Moreover, PeSTZ1 up-regulation reduces malondialdehyde and ROS accumulation by activating the antioxidant system. Taken together, these results suggested that overexpressing PeSTZ1 in 84K poplar enhances freezing tolerance through the modulation of ROS scavenging via the direct regulation of PeAPX2 expression.


Subject(s)
Ascorbate Peroxidases/physiology , Freezing , Plant Proteins/physiology , Populus/physiology , Reactive Oxygen Species/metabolism , Transcription Factors/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/physiology , Populus/genetics , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...