Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Prep Biochem Biotechnol ; 53(9): 1081-1091, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36756987

ABSTRACT

Chinese hamster ovary (CHO) cells are commonly used as "bio-machines" to pro-duce monoclonal antibodies (mAb) because of their ability to produce very complex proteins. In this study, we evaluated the effects of pine needle water extract (PNWE), pine needle ethanol extract (PNEE), and pine needle polysaccharide extract (PNPE) on the CHO cell growth, mAb production and quality using a Fed-batch culture process. PNPE maintained high VCD and viability, and the titer increase was correlated with its concentration. Three extracts effectively reduced the acidic charge variant and modulated mAb glycosylation. PNPE had the most profound effect, with G0F decreasing by 8.7% and G1Fa increasing by 6.7%. The change in the glycoform was also closely related to the PNPE concentration. This study demonstrated that PNPE could facilitate CHO cell growth, increase the mAb production, decrease acidic charge variants, and regulate mAb glycoforms. To identify the components responsible for the above changes, the sugar and flavonoid contents in the extracts were determined, and the chemical compounds were identified by LC-MS, resulting in 38 compounds identified from PNPE. Rich in sugars and flavonoids in these three extracts may be related to increased CHO cell growth and productivity, and changes in glycoforms.


Subject(s)
Antibodies, Monoclonal , Batch Cell Culture Techniques , Cricetinae , Animals , Cricetulus , CHO Cells , Batch Cell Culture Techniques/methods
2.
Immunohorizons ; 6(6): 344-355, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697478

ABSTRACT

Epitope mapping of the interactions between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Abs is challenging because of complexity in protein three-dimensional structures. Protein structure fingerprint technology was applied for epitope mapping of 44 SARS-CoV-2 Abs with three-dimensional structure complexes. The results defined how the epitopes were distributed on SARS-CoV-2 and how the patterns of six CDRs from Abs participated in neutralization. Also, the residue-residue recognition revealed that certain residues had higher frequencies on the interfaces between SARS-CoV-2 and Abs, and the activity correlated with the physicochemical properties of the residues at the interface. Thus, epitope mapping provides significant lead information for development of epitope-based designs for Abs, vaccines, and diagnostic reagents. This is a bioinformatics project of structural data analysis; no animals or cells were used.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitope Mapping , Epitopes , Humans , Membrane Glycoproteins , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
3.
Endocrinology ; 159(1): 260-271, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29069393

ABSTRACT

Sclerostin antibody (Scl-Ab) restored bone mass and strength in the ovariectomized rat model of postmenopausal osteoporosis. Increased bone mineral density (BMD) and decreased skeletal fragility fracture risk have been reported in postmenopausal osteoporotic women receiving Scl-Ab. In males, loss of androgen leads to rapid decreases in BMD and an increased risk of fragility fractures. We hypothesized that Scl-Ab could reverse the loss of bone mass and strength caused by androgen ablation in the orchiectomized (ORX) rat model of male osteoporosis. We treated 9-month-old ORX Sprague Dawley rats (3 months after ORX) subcutaneously twice weekly with vehicle or Scl-Ab (5 or 25 mg/kg) for 6 weeks (n = 10 per group). Both doses of Scl-Ab fully reversed the BMD deficit in the lumbar spine and femur and tibia in ORX rats. Microcomputed tomography showed that the bone mass in the fifth lumbar vertebral body, femur diaphysis, and femoral neck were dose-dependently restored by Scl-Ab. The bone strength at these sites increased significantly with Scl-Ab to levels matching those of sham-operated controls and correlated positively with improvements in bone mineral content, demonstrating bone quality maintenance. Dynamic histomorphometry of the tibial diaphysis and second lumbar vertebral body demonstrated that Scl-Ab significantly increased bone formation on periosteal, endocortical, and trabecular surfaces and significantly decreased bone resorption on endocortical and trabecular surfaces. The effects of Scl-Ab on increasing bone formation and decreasing bone resorption led to restoration of bone mass and strength in androgen-deficient rats. These findings support the ongoing evaluation of Scl-Ab as a potential therapeutic agent for osteoporosis in men.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Bone Density Conservation Agents/therapeutic use , Bone Morphogenetic Proteins/immunology , Bone and Bones/drug effects , Disease Models, Animal , Genetic Markers/immunology , Osteogenesis/drug effects , Osteoporosis/drug therapy , Absorptiometry, Photon , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Bone Density/drug effects , Bone Density Conservation Agents/administration & dosage , Bone Density Conservation Agents/adverse effects , Bone Morphogenetic Proteins/metabolism , Bone Resorption/prevention & control , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Dose-Response Relationship, Drug , Injections, Subcutaneous , Male , Molecular Targeted Therapy , Orchiectomy , Organ Size/drug effects , Osteoporosis/diagnostic imaging , Osteoporosis/pathology , Prostate/drug effects , Prostate/pathology , Rats, Sprague-Dawley , Seminal Vesicles/drug effects , Seminal Vesicles/pathology , Shear Strength/drug effects , Weight Gain/drug effects , X-Ray Microtomography
4.
Bone ; 105: 163-172, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28867373

ABSTRACT

Sustained elevation of parathyroid hormone (PTH) is catabolic to cortical bone, as evidenced by deterioration in bone structure (cortical porosity), and is a major factor for increased fracture risk in chronic kidney disease (CKD). Etelcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces PTH levels in subtotal nephrectomized (Nx) rats and in hemodialysis patients with secondary hyperparathyroidism (SHPT) in clinical studies; however, effects of etelcalcetide on bone have not been determined. In a rat model of established SHPT with renal osteodystrophy, etelcalcetide or vehicle was administered by subcutaneous (s.c.) injection to subtotal Nx rats with elevated PTH (>750pg/mL) once per day for 6weeks. Sham-operated rats receiving vehicle (s.c.) served as non-SHPT controls. Prior to treatment, significant increases in serum creatinine (2-fold), blood urea nitrogen (BUN, 3-fold), PTH (5-fold), fibroblast growth factor-23 (FGF23; 13-fold) and osteocalcin (12-fold) were observed in SHPT rats compared to non-SHPT controls. Elevations in serum creatinine and BUN were unaffected by treatment with vehicle or etelcalcetide. In contrast, etelcalcetide significantly decreased PTH, FGF23 and osteocalcin, whereas vehicle treatment did not. Cortical bone porosity increased and bone strength decreased in vehicle-treated SHPT rats compared to non-SHPT controls. Cortical bone structure improved and energy to failure was significantly greater in SHPT rats treated with etelcalcetide compared to vehicle. Mineralization lag time and marrow fibrosis were significantly reduced by etelcalcetide. In conclusion, etelcalcetide reduced bone turnover, attenuated mineralization defect and marrow fibrosis, and preserved cortical bone structure and bone strength by lowering PTH in subtotal Nx rats with established SHPT.


Subject(s)
Cortical Bone/physiopathology , Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/physiopathology , Nephrectomy , Peptides/therapeutic use , Receptors, Calcium-Sensing/agonists , Animals , Biomechanical Phenomena/drug effects , Blood Urea Nitrogen , Calcium/blood , Cortical Bone/drug effects , Creatinine/blood , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Hyperparathyroidism, Secondary/blood , Hyperplasia , Kidney Function Tests , Male , Osteocalcin/blood , Parathyroid Glands/pathology , Parathyroid Hormone/blood , Peptides/pharmacology , Phosphorus/blood , Rats, Sprague-Dawley , Tartrate-Resistant Acid Phosphatase/blood
5.
Bone ; 101: 77-87, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28428078

ABSTRACT

Romosozumab, a humanized monoclonal sclerostin antibody under development for the treatment of osteoporosis, has a unique mechanism of action on bone-increasing bone formation and decreasing bone resorption. The effects on bone formation are transient, eliciting a rapid increase in bone formation that attenuates with continued treatment. Although bone formation attenuates, bone mineral density (BMD) continues to increase. To explore potential tissue-level mechanisms that could contribute to a progressive increase in spine BMD, we used kinetic reconstruction techniques to examine the effects of romosozumab on modeling and remodeling units in vertebral cancellous bone from adult cynomolgus monkeys administered romosozumab for 10 and 28weeks. The 10-week study duration captured a period of high modeling-based bone formation, and the 28-week study duration followed the self-regulation or attenuation of bone formation in cancellous bone that occurs with long-term treatment. Sequential fluorochrome labels applied for the kinetic reconstruction were also used to evaluate treatment effects on osteoblast function as early as 3weeks, and on bone formation and bone accrual in the vertebral cortex over 28weeks. Kinetic reconstruction of remodeling and modeling formation sites in vertebral cancellous bone revealed that romosozumab effected significant transient increases in mineral apposition rate in remodeling sites at week 3 that was not sustained with continued treatment. However, romosozumab treatment caused sustained improvement in fractional labeling of osteoid, an index of osteoblast efficiency, at remodeling formative sites at both weeks 10 and 28 that was the major contributor to significant increases in final wall thickness (W.Th) of remodeling packets. Remodeling W.Th matched the final W.Th of modeling packets at week 10. At both weeks 10 and 28, romosozumab significantly decreased eroded surface (ES/BS). At week 28, romosozumab also significantly reduced resorption period (Rs.P) and final resorption depth (Rs.De). The reduced final Rs.De combined with the increased W.Th resulted in a significant increase in bone balance (BB) at the level of the remodeling unit. Assessment of bone formation on the vertebral periosteal and endocortical surfaces following 28weeks of treatment revealed that romosozumab significantly increased bone formation on these surfaces, which had attenuated by week 28, resulting in significant increases in new periosteal and endocortical bone by week 28. These data suggest that multiple factors potentially contribute to the increase in spine BMD with romosozumab treatment. In the early period of treatment, increased modeling-based bone formation, increased W.Th at remodeling sites, a decrease in remodeling space secondary to decreased ES/BS in vertebral cancellous bone, and increased periosteal and endocortical bone formation in the vertebral cortex contribute to the early increase in spine BMD. Following the self-regulation of bone formation when modeling-based bone formation has attenuated, a decrease in remodeling space secondary to reduced ES/BS and a positive BB secondary to decreased final Rs.De and increased W.Th contribute to the progressive increase in spine BMD with long-term treatment.


Subject(s)
Antibodies, Monoclonal/pharmacology , Bone Density/drug effects , Animals , Bone Remodeling/drug effects , Cancellous Bone/cytology , Cancellous Bone/drug effects , Cortical Bone/cytology , Cortical Bone/drug effects , Macaca fascicularis , Male , Osteoblasts/cytology , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/metabolism , Wnt Signaling Pathway/drug effects
6.
J Bone Miner Res ; 32(4): 834-845, 2017 04.
Article in English | MEDLINE | ID: mdl-27505721

ABSTRACT

Results of prior studies suggest that fibroblast growth factor 21 (FGF21) may be involved in bone turnover and in the actions of peroxisome proliferator-activated receptor (PPAR) α and γ in mice. We have conducted independent studies to examine the effects of FGF21 on bone homeostasis and the role of FGF21 in PPARα and γ actions. High-fat-diet-induced obesity (DIO) mice were administered vehicle or recombinant human FGF21 (rhFGF21) intraperitoneally at 0 (vehicle), 0.1, 1, and 3 mg/kg daily for 2 weeks. Additional groups of DIO mice received water or 10 mg/kg rosiglitazone daily. Mice treated with rhFGF21 or rosiglitazone showed expected metabolic improvements in glucose, insulin, and lipid levels. However, bone loss was not detected in rhFGF21-treated mice by dual-energy X-ray absorptiometry (DXA), micro-CT, and histomorphometric analyses. Mineral apposition rate, a key bone formation parameter, was unchanged by rhFGF21, while significantly decreased by rosiglitazone in DIO mice. Bone resorption markers, OPG/RANKL mRNA expression, and histological bone resorption indices were unchanged by rhFGF21 or rosiglitazone. Bone marrow fat was unchanged by rhFGF21, while increased by rosiglitazone. Furthermore, FGF21 knockout mice did not show high bone mass phenotype. Treatment with PPARα or PPARγ agonists caused similar metabolic effects in FGF21 knockout and wild-type mice. These results contrast with previous findings and suggest that FGF21 is not critical for bone homeostasis or actions of PPARα and PPARγ. © 2016 American Society for Bone and Mineral Research.


Subject(s)
Bone Density , Fibroblast Growth Factors , Gene Expression Regulation/drug effects , Homeostasis , PPAR alpha , PPAR gamma , Animals , Bone Density/drug effects , Bone Density/genetics , Dietary Fats/adverse effects , Dietary Fats/pharmacology , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/pharmacology , Glucose/metabolism , Homeostasis/drug effects , Homeostasis/genetics , Humans , Insulin/genetics , Insulin/metabolism , Male , Mice , Mice, Knockout , Obesity/chemically induced , Obesity/metabolism , Osteoprotegerin/biosynthesis , Osteoprotegerin/genetics , PPAR alpha/agonists , PPAR alpha/biosynthesis , PPAR alpha/genetics , PPAR gamma/agonists , PPAR gamma/biosynthesis , PPAR gamma/genetics , RANK Ligand/biosynthesis , RANK Ligand/genetics , Rosiglitazone , Thiazolidinediones/pharmacology
8.
J Bone Miner Res ; 30(7): 1280-9, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25684625

ABSTRACT

Denosumab (DMAb) administration to postmenopausal women with osteoporosis is associated with continued bone mineral density (BMD) increases and low fracture incidence through 8 years, despite persistently reduced bone turnover markers and limited fluorochrome labeling in iliac crest bone biopsies. BMD increases were hypothesized to result from additional accrual of bone matrix via modeling-based bone formation-a hypothesis that was tested by examining fluorochrome labeling patterns in sections from ovariectomized (OVX) cynomolgus monkeys (cynos) treated with DMAb for 16 months. Mature OVX or Sham cynos were treated monthly with vehicle for 16 months, whereas other OVX cynos received monthly 25 or 50 mg/kg DMAb. DMAb groups exhibited very low serum bone resorption and formation biomarkers and near-absent fluorochrome labeling in proximal femur cancellous bone. Despite these reductions, femoral neck dual-energy X-ray absorptiometry (DXA) BMD continued to rise in DMAb-treated cynos, from a 4.6% increase at month 6 to 9.8% above baseline at month 16. Further examination of cortical bone in the proximal femur demonstrated consistent and prominent labeling on the superior endocortex and the inferior periosteal surface, typically containing multiple superimposed labels from month 6 to 16 over smooth cement lines, consistent with continuous modeling-based bone formation. These findings were evident in all groups. Quantitative analysis at another modeling site, the ninth rib, demonstrated that DMAb did not alter the surface extent of modeling-based labels, or the cortical area bound by them, relative to OVX controls, while significantly reducing remodeling-based bone formation and eroded surface. This conservation of modeling-based formation occurred concomitantly with increased femoral neck strength and, when coupled with a reduction in remodeling-based bone loss, is likely to contribute to increases in bone mass with DMAb treatment. Thus, this study provides preclinical evidence for a potential mechanism that could contribute to the clinical observations of continued BMD increases and low fracture rates with long-term DMAb administration.


Subject(s)
Aging/physiology , Bone Density/drug effects , Bone Remodeling/drug effects , Denosumab/pharmacology , Osteogenesis/drug effects , Animals , Female , Femur Neck/drug effects , Femur Neck/physiology , Fluorescent Dyes/metabolism , Macaca fascicularis , Ovariectomy , Staining and Labeling
9.
Endocrinology ; 155(12): 4785-97, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25259718

ABSTRACT

The effects of up to 26 weeks of sclerostin antibody (Scl-Ab) treatment were investigated in ovariectomized (OVX) rats. Two months after surgery, 6-month-old osteopenic OVX rats were treated with vehicle or Scl-Ab (25 mg/kg, sc, one time per week) for 6, 12, or 26 weeks. In vivo dual-energy x-ray absorptiometry analysis demonstrated that the bone mineral density of lumbar vertebrae and femur-tibia increased progressively through 26 weeks of Scl-Ab treatment along with progressive increases in trabecular and cortical bone mass and bone strength at multiple sites. There was a strong correlation between bone mass and maximum load at lumbar vertebra, femoral neck, and diaphysis at weeks 6 and 26. Dynamic histomorphometric analysis showed that lumbar trabecular and tibial shaft endocortical and periosteal bone formation rates (BFR/BS) increased and peaked at week 6 with Scl-Ab-treatment; thereafter trabecular and endocortical BFR/BS gradually declined but remained significantly greater than OVX controls at week 26, whereas periosteal BFR/BS returned to OVX control levels at week 26. In the tibia metaphysis, trabecular BFR/BS in the Scl-Ab treated group remained elevated from week 6 to week 26. The osteoclast surface and eroded surface were significantly lower in Scl-Ab-treated rats than in OVX controls at all times. In summary, bone mass and strength increased progressively over 26 weeks of Scl-Ab treatment in adult OVX rats. The early gains were accompanied by increased cortical and trabecular bone formation and reduced osteoclast activity, whereas later gains were attributed to residual endocortical and trabecular osteoblast stimulation and persistently low osteoclast activity.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone and Bones/drug effects , Osteoporosis/drug therapy , Animals , Antibodies, Monoclonal/pharmacology , Bone Density/drug effects , Bone Remodeling/drug effects , Drug Evaluation, Preclinical , Female , Genetic Markers , Ovariectomy , Random Allocation , Rats, Sprague-Dawley , X-Ray Microtomography
10.
Bone ; 67: 305-13, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25093263

ABSTRACT

Sclerostin (Scl) is an osteocyte protein that decreases bone formation, and its inhibition by neutralizing antibodies (Scl-Ab) increases bone formation, mass and strength. We investigated the effects of Scl-Ab in mature ovariectomized (OVX) rats with a mechanistic focus on longer-term responses of osteoclasts, osteoblasts and osteocytes. Four-month-old Sprague-Dawley rats had OVX or sham surgery. Two months later, sham controls received sc vehicle while OVX rats received vehicle (OVX-Veh) or Scl-Ab (25mg/kg) once weekly for 6 or 26weeks followed by necropsy (n=12/group). Terminal blood was collected for biochemistry, non-adherent marrow cells were harvested from femurs for ex vivo osteoclast formation assays, and vertebrae and tibiae were collected for dynamic histomorphometry and mRNA analyses. Scl-Ab treatment led to progressively thicker but fewer trabeculae in the vertebra, leading to increased trabecular bone volume and reduced trabecular surfaces. Scl-Ab also increased cortical bone volume in the tibia, via early periosteal expansion and progressive endocortical contraction. Scl-Ab significantly reduced parameters of bone resorption at week 6 relative to OVX-Veh controls, including reduced serum TRACP-5b, reduced capacity of marrow cells to form osteoclasts ex vivo, and >80% reductions in vertebral trabecular and tibial endocortical eroded surfaces. At week 26, serum TRACP-5b and ex vivo osteoclast formation were no longer reduced in the Scl-Ab group, but eroded surfaces remained >80% lower than in OVX-Veh controls without evidence for altered skeletal mRNA expression of opg or rankl. Scl-Ab significantly increased parameters of bone formation at week 6 relative to OVX-Veh controls, including increases in serum P1NP and osteocalcin, and increased trabecular, endocortical and periosteal bone formation rates (BFRs). At week 26, surface-referent trabecular BFR remained significantly increased in the Scl-Ab group versus OVX-Veh controls, but after adjusting for a reduced extent of trabecular surfaces, overall (referent-independent) trabecular BFR was no longer significantly elevated. Similarly, serum P1NP and osteocalcin were no longer significantly increased in the Scl-Ab group at week 26. Tibial endocortical and periosteal BFR were increased at week 6 in the Scl-Ab group versus OVX-Veh controls, while at week 26 only endocortical BFR remained increased. The Scl-Ab group exhibited significant increments in skeletal mRNA expression of several osteocyte genes, with sost showing the greatest induction in both the tibia and vertebra. We propose that Scl-Ab administration, and/or the gains in bone volume that result, may have increased osteocytic expression of Scl as a possible means of regulating gains in bone mass.


Subject(s)
Antibodies/pharmacology , Bone Morphogenetic Proteins/immunology , Genetic Markers/immunology , Animals , Antibodies/administration & dosage , Bone Density/drug effects , Female , Osteoclasts/drug effects , Osteogenesis/drug effects , Ovariectomy , Rats , Rats, Sprague-Dawley
11.
J Bone Miner Res ; 29(6): 1424-30, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24967455

ABSTRACT

Bone formation can be remodeling-based (RBF) or modeling-based (MBF), the former coupled to bone resorption and the latter occurring directly on quiescent surfaces. Unlike osteoanabolic therapies such as parathyroid hormone (PTH) 1-34 that increase bone remodeling and thus both formation and resorption, sclerostin antibody (Scl-Ab) increases bone formation while decreasing bone resorption. With this unique profile, we tested our hypothesis that Scl-Ab primarily elicited MBF by examining bones from Scl-Ab­treated ovariectomized (OVX) rats and male cynomolgus monkeys (cynos). Histomorphometry was performed to quantify and characterize bone surfaces in OVX rats administered vehicle or Scl-Ab (25 mg/kg) subcutaneously (sc) twice/week for 5 weeks and in adolescent cynos administered vehicle or Scl-Ab (30 mg/kg) sc every 2 weeks for 10 weeks. Fluorochrome-labeled surfaces in L2 vertebra and femur endocortex (cynos only) were considered to be MBF or RBF based on characteristics of their associated cement lines. In OVX rats, Scl-Ab increased MBF by eightfold (from 7% to 63% of bone surface, compared to vehicle). In cynos, Scl-Ab markedly increased MBF on trabecular (from 0.6% to 34%) and endocortical surfaces (from 7% to 77%) relative to vehicle. Scl-Ab did not significantly affect RBF in rats or cynos despite decreased resorption surface in both species. In cynos, Scl-Ab resulted in a greater proportion of RBF and MBF containing sequential labels from week 2, indicating an increase in the lifespan of the formative site. This extended formation period was associated with robust increases in the percent of new bone volume formed. These results demonstrate that Scl-Ab increased bone volume by increasing MBF and prolonged the formation period at both modeling and remodeling sites while reducing bone resorption. Through these unique effects on bone formation and resorption, Scl-Ab may prove to be an effective therapeutic to rapidly increase bone mass in diseases such as osteoporosis.


Subject(s)
Antibodies/pharmacology , Bone Morphogenetic Proteins/immunology , Bone and Bones/physiology , Genetic Markers/immunology , Osteogenesis/drug effects , Animals , Bone Remodeling/drug effects , Bone and Bones/drug effects , Female , Macaca fascicularis , Male , Organ Size/drug effects , Organ Specificity/drug effects , Ovariectomy , Rats, Sprague-Dawley
12.
Arthritis Rheum ; 65(3): 721-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23233270

ABSTRACT

OBJECTIVE: Sclerostin plays a major role in regulating skeletal bone mass, but its effects in articular cartilage are not known. The purpose of this study was to determine whether genetic loss or pharmacologic inhibition of sclerostin has an impact on knee joint articular cartilage. METHODS: Expression of sclerostin was determined in articular cartilage and bone tissue obtained from mice, rats, and human subjects, including patients with knee osteoarthritis (OA). Mice with genetic knockout (KO) of sclerostin and pharmacologic inhibition of sclerostin with a sclerostin-neutralizing monoclonal antibody (Scl-Ab) in aged male rats and ovariectomized (OVX) female rats were used to study the effects of sclerostin on pathologic processes in the knee joint. The rat medial meniscus tear (MMT) model of OA was used to investigate the pharmacologic efficacy of systemic Scl-Ab or intraarticular (IA) delivery of a sclerostin antibody-Fab (Scl-Fab) fragment. RESULTS: Sclerostin expression was detected in rodent and human articular chondrocytes. No difference was observed in the magnitude or distribution of sclerostin expression between normal and OA cartilage or bone. Sclerostin-KO mice showed no difference in histopathologic features of the knee joint compared to age-matched wild-type mice. Pharmacologic treatment of intact aged male rats or OVX female rats with Scl-Ab had no effect on morphologic characteristics of the articular cartilage. In the rat MMT model, pharmacologic treatment of animals with either systemic Scl-Ab or IA injection of Scl-Fab had no effect on lesion development or severity. CONCLUSION: Genetic absence of sclerostin does not alter the normal development of age-dependent OA in mice, and pharmacologic inhibition of sclerostin with Scl-Ab has no impact on articular cartilage remodeling in rats with posttraumatic OA.


Subject(s)
Bone Morphogenetic Proteins/genetics , Cartilage, Articular/injuries , Cartilage, Articular/physiology , Genetic Markers/genetics , Glycoproteins/genetics , Osteoarthritis, Knee/physiopathology , Adaptor Proteins, Signal Transducing , Adult , Aged , Aging/physiology , Animals , Antibodies, Monoclonal/pharmacology , Bone Morphogenetic Proteins/immunology , Bone Morphogenetic Proteins/metabolism , Chondrocytes/physiology , Female , Gene Expression/physiology , Genetic Markers/immunology , Glycoproteins/immunology , Glycoproteins/metabolism , Humans , Intercellular Signaling Peptides and Proteins , Knee Injuries/genetics , Knee Injuries/metabolism , Knee Injuries/physiopathology , Knee Joint/physiopathology , Male , Mice , Mice, Knockout , Middle Aged , Osteoarthritis, Knee/genetics , Osteoarthritis, Knee/metabolism , Ovariectomy , Rats , Rats, Sprague-Dawley , Tissue Banks
13.
Bone ; 49(6): 1178-85, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21890008

ABSTRACT

Humans with inherited sclerostin deficiency have high bone mass. Targeted deletion of the sclerostin gene in mice (SOST-KO) causes increases in bone formation, bone mass and bone strength. Inhibition of sclerostin by a monoclonal antibody increases bone formation and enhances fracture healing in rodent and primate models. In this study, we describe the temporal progression of femoral fracture healing in SOST-KO mice compared with wild type (WT) control mice to further characterize the role of sclerostin in fracture healing. Sixty-seven male 9-10 week-old SOST-KO (N=37) and WT (N=30) mice underwent a closed femoral fracture. Weekly radiography was used to monitor the progress of healing. Histologic sections were used to characterize callus composition, evaluate callus bridging, and quantify lamellar bone formation on days 14 and 28. Densitometry and biomechanical testing were utilized to characterize bone mass and strength at the fractured and contralateral femurs on day 45. A significant improvement in time to radiographic healing (no discernible fracture line) was observed in SOST-KO mice, which corresponded to an increase in histologic bony bridging at 14 days (38% versus 0% in WT). Both genotypes appeared to be nearly fully bridged at 28 days post-fracture. The increased bridging at 14 days was associated with 97% greater bone area and 40% lower cartilage area in the callus of SOST-KO mice as compared to WT mice. Bone formation-related endpoints were higher in SOST-KO mice at both 14 and 28 days. At 45 days post-fracture, peak load and bone mass were significantly greater in the fractured femurs of SOST-KO mice as compared to WT mice. In conclusion, fractures in mice lacking sclerostin showed accelerated bridging, greater callus maturation, and increased bone formation and strength in the callus.


Subject(s)
Bony Callus/pathology , Fracture Healing , Glycoproteins/deficiency , Glycoproteins/genetics , Adaptor Proteins, Signal Transducing , Animals , Bone Density/physiology , Bony Callus/diagnostic imaging , Bony Callus/physiopathology , Femoral Fractures/diagnostic imaging , Femoral Fractures/genetics , Femoral Fractures/pathology , Femoral Fractures/physiopathology , Femur/diagnostic imaging , Femur/pathology , Femur/physiopathology , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Knockout , Organ Size , Radiography , Staining and Labeling
14.
Endocrinology ; 152(9): 3312-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21733832

ABSTRACT

Clinical studies have revealed a blunting of the bone anabolic effects of parathyroid hormone treatment in osteoporotic patients in the setting of pre- or cotreatment with the antiresorptive agent alendronate (ALN). Sclerostin monoclonal antibody (Scl-Ab) is currently under clinical investigation as a new potential anabolic therapy for postmenopausal osteoporosis. The purpose of these experiments was to examine the influence of pretreatment or cotreatment with ALN on the bone anabolic actions of Scl-Ab in ovariectomized (OVX) rats. Ten-month-old osteopenic OVX rats were treated with ALN or vehicle for 6 wk, before the start of Scl-Ab treatment. ALN-pretreated OVX rats were switched to Scl-Ab alone or to a combination of ALN and Scl-Ab for another 6 wk. Vehicle-pretreated OVX rats were switched to Scl-Ab or continued on vehicle to serve as controls. Scl-Ab treatment increased areal bone mineral density, volumetric bone mineral density, trabecular and cortical bone mass, and bone strength similarly in OVX rats pretreated with ALN or vehicle. Serum osteocalcin and bone formation rate on trabecular, endocortical, and periosteal surfaces responded similarly to Scl-Ab in ALN or vehicle-pretreated OVX rats. Furthermore, cotreatment with ALN did not have significant effects on the increased bone formation, bone mass, and bone strength induced by Scl-Ab in the OVX rats that were pretreated with ALN. These results indicate that the increases in bone formation, bone mass, and bone strength with Scl-Ab treatment were not affected by pre- or cotreatment with ALN in OVX rats with established osteopenia.


Subject(s)
Alendronate/pharmacology , Antibodies, Monoclonal/pharmacology , Bone Density Conservation Agents/pharmacology , Bone Density/drug effects , Bone Diseases, Metabolic/drug therapy , Bone Morphogenetic Proteins/immunology , Genetic Markers/immunology , Osteogenesis/drug effects , Acid Phosphatase/blood , Alendronate/therapeutic use , Animals , Antibodies, Monoclonal/therapeutic use , Bone Density/immunology , Bone Density Conservation Agents/therapeutic use , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/immunology , Bone and Bones/drug effects , Bone and Bones/immunology , Disease Models, Animal , Female , Isoenzymes/blood , Osteocalcin/blood , Osteogenesis/immunology , Ovariectomy , Rats , Rats, Sprague-Dawley , Tartrate-Resistant Acid Phosphatase
15.
J Bone Miner Res ; 26(11): 2610-21, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21773994

ABSTRACT

The physiological role of Dickkopf-1 (Dkk1) during postnatal bone growth in rodents and in adult rodents was examined utilizing an antibody to Dkk1 (Dkk1-Ab) that blocked Dkk1 binding to both low density lipoprotein receptor-related protein 6 (LRP6) and Kremen2, thereby preventing the Wnt inhibitory activity of Dkk1. Treatment of growing mice and rats with Dkk1-Ab resulted in a significant increase in bone mineral density because of increased bone formation. In contrast, treatment of adult ovariectomized rats did not appreciably impact bone, an effect that was associated with decreased Dkk1 expression in the serum and bone of older rats. Finally, we showed that Dkk1 plays a prominent role in adult bone by mediating fracture healing in adult rodents. These data suggest that, whereas Dkk1 significantly regulates bone formation in younger animals, its role in older animals is limited to pathologies that lead to the induction of Dkk1 expression in bone and/or serum, such as traumatic injury.


Subject(s)
Aging/metabolism , Bone and Bones/injuries , Bone and Bones/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Osteogenesis/physiology , Aging/drug effects , Animals , Antibodies, Blocking/administration & dosage , Antibodies, Blocking/pharmacology , Bone Density/drug effects , Bone Diseases, Metabolic/blood , Bone Diseases, Metabolic/physiopathology , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , Cell Line , Estrogens/deficiency , Female , Femur/diagnostic imaging , Femur/drug effects , Femur/pathology , Fracture Healing/drug effects , Humans , Intercellular Signaling Peptides and Proteins/blood , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/pathology , Male , Mice , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects , Wnt Signaling Pathway/drug effects , X-Ray Microtomography
16.
J Bone Miner Res ; 25(12): 2647-56, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20641040

ABSTRACT

The purpose of this study was to evaluate the effects of sclerostin inhibition by treatment with a sclerostin antibody (Scl-AbII) on bone formation, bone mass, and bone strength in an aged, gonad-intact male rat model. Sixteen-month-old male Sprague-Dawley rats were injected subcutaneously with vehicle or Scl-AbII at 5 or 25 mg/kg twice per week for 5 weeks (9-10/group). In vivo dual-energy X-ray absorptiometry (DXA) analysis showed that there was a marked increase in areal bone mineral density of the lumbar vertebrae (L(1) to L(5) ) and long bones (femur and tibia) in both the 5 and 25 mg/kg Scl-AbII-treated groups compared with baseline or vehicle controls at 3 and 5 weeks after treatment. Ex vivo micro-computed tomographic (µCT) analysis demonstrated improved trabecular and cortical architecture at the fifth lumbar vertebral body (L(5) ), femoral diaphysis (FD), and femoral neck (FN) in both Scl-AbII dose groups compared with vehicle controls. The increased cortical and trabecular bone mass was associated with a significantly higher maximal load of L(5) , FD, and FN in the high-dose group. Bone-formation parameters (ie, mineralizing surface, mineral apposition rate, and bone-formation rate) at the proximal tibial metaphysis and tibial shaft were markedly greater on trabecular, periosteal, and endocortical surfaces in both Scl-AbII dose groups compared with controls. These results indicate that sclerostin inhibition by treatment with a sclerostin antibody increased bone formation, bone mass, and bone strength in aged male rats and, furthermore, suggest that pharmacologic inhibition of sclerostin may represent a promising anabolic therapy for low bone mass in aged men.


Subject(s)
Aging/metabolism , Antibodies, Monoclonal/immunology , Bone Density/physiology , Bone Morphogenetic Proteins/antagonists & inhibitors , Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Osteogenesis , Absorptiometry, Photon , Animals , Bone Morphogenetic Proteins/metabolism , Bone and Bones/cytology , Bone and Bones/diagnostic imaging , Collagen Type I/metabolism , Genetic Markers , Male , Organ Size , Osteocalcin/blood , Rats , Rats, Sprague-Dawley , Serotonin/blood , Tomography, X-Ray Computed
17.
Bone ; 45(4): 669-76, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19539794

ABSTRACT

Orchiectomized (ORX) rats were used to examine the extent to which their increased bone resorption and decreased bone density might relate to increases in RANKL, an essential cytokine for bone resorption. Serum testosterone declined by >95% in ORX rats 1 and 2 weeks after surgery (p<0.05 versus sham controls), with no observed changes in serum RANKL. In contrast, RANKL in bone marrow plasma and bone marrow cell extracts was significantly increased (by approximately 100%) 1 and 2 weeks after ORX. Regression analyses of ORX and sham controls revealed a significant inverse correlation between testosterone and RANKL levels measured in marrow cell extracts (R=-0.58), while marrow plasma RANKL correlated positively with marrow plasma TRACP-5b, an osteoclast marker (R=0.63). The effects of RANKL inhibition were then studied by treating ORX rats for 6 weeks with OPG-Fc (10 mg/kg, twice/week SC) or with PBS, beginning immediately after surgery. Sham controls were treated with PBS. Vehicle-treated ORX rats showed significant deficits in BMD of the femur/tibia and lower trabecular bone volume in the distal femur (p<0.05 versus sham). OPG-Fc treatment of ORX rats increased femur/tibia BMD and trabecular bone volume to levels that significantly exceeded values for ORX or sham controls. OPG-Fc reduced trabecular osteoclast surfaces in ORX rats by 99%, and OPG-Fc also prevented ORX-related increases in endocortical eroded surface and ORX-related reductions in periosteal bone formation rate. Micro-CT of lumbar vertebrae from OPG-Fc-treated ORX rats demonstrated significantly greater cortical and trabecular bone volume and density versus ORX-vehicle controls. In summary, ORX rats exhibited increased RANKL protein in bone marrow plasma and in bone marrow cells, with no changes in serum RANKL. Data from regression analyses were consistent with a potential role for testosterone in suppressing RANKL production in bone marrow, and also suggested that soluble RANKL in bone marrow might promote bone resorption. RANKL inhibition prevented ORX-related deficits in trabecular BMD, trabecular architecture, and periosteal bone formation while increasing cortical and trabecular bone volume and density. These results support the investigation of RANKL inhibition as a strategy for preventing bone loss associated with androgen ablation or deficiency.


Subject(s)
Bone Marrow/metabolism , Bone Resorption/prevention & control , Orchiectomy , Osteoprotegerin/metabolism , RANK Ligand/antagonists & inhibitors , RANK Ligand/metabolism , Acid Phosphatase/blood , Animals , Bone Density/drug effects , Bone Marrow/drug effects , Bone Resorption/blood , Femur Neck/diagnostic imaging , Femur Neck/drug effects , Femur Neck/pathology , Humans , Isoenzymes/blood , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/pathology , Male , Osteoprotegerin/pharmacology , Rats , Rats, Sprague-Dawley , Tartrate-Resistant Acid Phosphatase , X-Ray Microtomography
18.
J Bone Miner Res ; 24(7): 1234-46, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19257823

ABSTRACT

RANKL is an essential mediator of bone resorption, and its activity is inhibited by osteoprotegerin (OPG). Transgenic (Tg) rats were engineered to continuously overexpress OPG to study the effects of continuous long-term RANKL inhibition on bone volume, density, and strength. Lumbar vertebrae, femurs, and blood were obtained from 1-yr-old female OPG-Tg rats (n = 32) and from age-matched wildtype (WT) controls (n = 23). OPG-Tg rats had significantly greater serum OPG (up to 260-fold) and significantly lower serum TRACP5b and osteocalcin compared with WT controls. Vertebral histomorphometry showed significant reductions in osteoclasts and bone turnover parameters in OPG-Tg rats versus WT controls, and these reductions were associated with significantly greater peak load in vertebrae tested through compression. No apparent differences in bone material properties were observed in OPG-Tg rat vertebrae, based on their unchanged intrinsic strength parameters and their normal linear relationship between vertebral bone mass and strength. Femurs from OPG-Tg rats were of normal length but showed mild osteopetrotic changes, including reduced periosteal perimeter (-6%) and an associated reduction in bending strength. Serum OPG levels in WT rats showed no correlations with any measured parameter of bone turnover, mass, or strength, whereas the supraphysiological serum OPG levels in OPG-Tg rats correlated negatively with bone turnover parameters and positively with vertebral bone mass and strength parameters. In summary, low bone turnover after 1 yr of OPG overexpression in rats was associated with increased vertebral bone mass and proportional increases in bone strength, with no evidence for deleterious effects on vertebral material properties.


Subject(s)
Bone Density , Gene Expression , Lumbar Vertebrae/growth & development , Osteoprotegerin/biosynthesis , Animals , Bone Remodeling , Female , Lumbar Vertebrae/metabolism , Organ Size , Osteoclasts/metabolism , Osteopetrosis/metabolism , Osteoprotegerin/genetics , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Time Factors
19.
J Bone Miner Res ; 24(4): 578-88, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19049336

ABSTRACT

The development of bone-rebuilding anabolic agents for potential use in the treatment of bone loss conditions, such as osteoporosis, has been a long-standing goal. Genetic studies in humans and mice have shown that the secreted protein sclerostin is a key negative regulator of bone formation, although the magnitude and extent of sclerostin's role in the control of bone formation in the aging skeleton is still unclear. To study this unexplored area of sclerostin biology and to assess the pharmacologic effects of sclerostin inhibition, we used a cell culture model of bone formation to identify a sclerostin neutralizing monoclonal antibody (Scl-AbII) for testing in an aged ovariectomized rat model of postmenopausal osteoporosis. Six-month-old female rats were ovariectomized and left untreated for 1 yr to allow for significant estrogen deficiency-induced bone loss, at which point Scl-AbII was administered for 5 wk. Scl-AbII treatment in these animals had robust anabolic effects, with marked increases in bone formation on trabecular, periosteal, endocortical, and intracortical surfaces. This not only resulted in complete reversal, at several skeletal sites, of the 1 yr of estrogen deficiency-induced bone loss, but also further increased bone mass and bone strength to levels greater than those found in non-ovariectomized control rats. Taken together, these preclinical results establish sclerostin's role as a pivotal negative regulator of bone formation in the aging skeleton and, furthermore, suggest that antibody-mediated inhibition of sclerostin represents a promising new therapeutic approach for the anabolic treatment of bone-related disorders, such as postmenopausal osteoporosis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Bone Morphogenetic Proteins/immunology , Bone and Bones/drug effects , Genetic Markers/immunology , Osteogenesis/drug effects , Osteoporosis, Postmenopausal/drug therapy , Animals , Biological Assay , Biomechanical Phenomena , Bone Density/drug effects , Bone and Bones/pathology , Cell Lineage/drug effects , Disease Models, Animal , Female , Femur/drug effects , Femur/pathology , Humans , Lumbar Vertebrae/drug effects , Lumbar Vertebrae/pathology , Mice , Neutralization Tests , Organ Size/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Osteocalcin/blood , Osteoporosis, Postmenopausal/blood , Osteoporosis, Postmenopausal/pathology , Osteoporosis, Postmenopausal/physiopathology , Ovariectomy , Rats , Rats, Sprague-Dawley , Tibia/drug effects , Tibia/pathology , Tomography, X-Ray Computed
20.
J Bone Miner Res ; 23(6): 860-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18269310

ABSTRACT

INTRODUCTION: Sclerosteosis is a rare high bone mass genetic disorder in humans caused by inactivating mutations in SOST, the gene encoding sclerostin. Based on these data, sclerostin has emerged as a key negative regulator of bone mass. We generated SOST knockout (KO) mice to gain a more detailed understanding of the effects of sclerostin deficiency on bone. MATERIALS AND METHODS: Gene targeting was used to inactivate SOST and generate a line of SOST KO mice. Radiography, densitometry, microCT, histomorphometry, and mechanical testing were used to characterize the impact of sclerostin deficiency on bone in male and female mice. Comparisons were made between same sex KO and wildtype (WT) mice. RESULTS: The results for male and female SOST KO mice were similar, with differences only in the magnitude of some effects. SOST KO mice had increased radiodensity throughout the skeleton, with general skeletal morphology being normal in appearance. DXA analysis of lumbar vertebrae and whole leg showed that there was a significant increase in BMD (>50%) at both sites. microCT analysis of femur showed that bone volume was significantly increased in both the trabecular and cortical compartments. Histomorphometry of trabecular bone revealed a significant increase in osteoblast surface and no significant change in osteoclast surface in SOST KO mice. The bone formation rate in SOST KO mice was significantly increased for trabecular bone (>9-fold) at the distal femur, as well as for the endocortical and periosteal surfaces of the femur midshaft. Mechanical testing of lumbar vertebrae and femur showed that bone strength was significantly increased at both sites in SOST KO mice. CONCLUSIONS: SOST KO mice have a high bone mass phenotype characterized by marked increases in BMD, bone volume, bone formation, and bone strength. These results show that sclerostin is a key negative regulator of a powerful, evolutionarily conserved bone formation pathway that acts on both trabecular and cortical bone.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Bone and Bones/metabolism , Gene Deletion , Osteogenesis , Adaptor Proteins, Signal Transducing , Animals , Biomarkers/blood , Bone Density , Bone Morphogenetic Proteins/deficiency , Bone Morphogenetic Proteins/genetics , Bone and Bones/diagnostic imaging , Calcium/blood , Female , Genetic Markers/genetics , Glycoproteins , Intercellular Signaling Peptides and Proteins , Male , Mice , Mice, Knockout , Phenotype , Phosphates/blood , Stress, Mechanical , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...