Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Accid Anal Prev ; 81: 243-50, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25194987

ABSTRACT

This paper presents a new method for evaluating in-vehicle secondary task driving safety. There are five in-vehicle distracter tasks: tuning the radio to a local station, touching the touch-screen telephone menu to a certain song, talking with laboratory assistant, answering a telephone via Bluetooth headset, and finding the navigation system from Ipad4 computer. Forty young drivers completed the driving experiment on a driving simulator. Measures of fixations, saccades, and blinks are collected and analyzed. Based on the measures of driver eye movements which have significant difference between the baseline and secondary task driving conditions, the evaluation index system is built. The Analytic Network Process (ANP) theory is applied for determining the importance weight of the evaluation index in a fuzzy environment. On the basis of the importance weight of the evaluation index, Fuzzy Comprehensive Evaluation (FCE) method is utilized to evaluate the secondary task driving safety. Results show that driving with secondary tasks greatly distracts the driver's attention from road and the evaluation model built in this study could estimate driving safety effectively under different driving conditions.


Subject(s)
Accidents, Traffic/prevention & control , Accidents, Traffic/psychology , Attention , Automobile Driving/psychology , Computer Simulation , Evaluation Studies as Topic , Eye Movements , Models, Theoretical , Safety , Adult , Female , Humans , Male , Middle Aged , Risk Assessment/statistics & numerical data , Young Adult
2.
Sensors (Basel) ; 12(6): 8355-70, 2012.
Article in English | MEDLINE | ID: mdl-22969404

ABSTRACT

This paper presents a solution for the license plate recognition problem in residential community administrations in China. License plate images are pre-processed through gradation, middle value filters and edge detection. In the license plate localization module the number of edge points, the length of license plate area and the number of each line of edge points are used for localization. In the recognition module, the paper applies a statistical character method combined with a structure character method to obtain the characters. In addition, more models and template library for the characters which have less difference between each other are built. A character classifier is designed and a fuzzy recognition method is proposed based on the fuzzy decision-making method. Experiments show that the recognition accuracy rate is up to 92%.

SELECTION OF CITATIONS
SEARCH DETAIL