Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Adv Sci (Weinh) ; : e2404456, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38894569

ABSTRACT

Considerable progress has been made in the development of drug delivery systems for diabetic wounds. However, underlying drawbacks, such as low delivery efficiency and poor tissue permeability, have rarely been addressed. In this study, a multifunctional biohybrid nanorobot platform comprising an artificial unit and several biological components is constructed. The artificial unit is a magnetically driven nanorobot surface modified with antibacterial 2-hydroxypropyltrimethyl ammonium chloride chitosan, which enables the entire platform to move and has excellent tissue penetration capacity. The biological components are two-step engineered extracellular vesicles that are first loaded with mangiferin, a natural polyphenolic compound with antioxidant properties, and then glycoengineered on the surface to enhance cellular uptake efficiency. As expected, the platform is more easily absorbed by endothelial cells and fibroblasts and exhibits outstanding dermal penetration performance and antioxidant properties. Encouraging results are also observed in infected diabetic wound models, showing improved wound re-epithelialization, collagen deposition, angiogenesis, and accelerated wound healing. Collectively, a biohybrid nanorobot platform that possesses the functionalities of both artificial units and biological components serves as an efficient delivery system to promote diabetic wound repair through dual-enhanced cell and tissue penetration and multistep interventions.

2.
ACS Appl Mater Interfaces ; 16(15): 18855-18866, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38577763

ABSTRACT

Solar-driven interfacial evaporation provides a promising pathway for sustainable freshwater and energy generation. However, developing highly efficient photothermal and photocatalytic nanomaterials is challenging. Herein, substoichiometric molybdenum oxide (MoO3-x) nanoparticles are synthesized via step-by-step reduction treatment of l-cysteine under mild conditions for simultaneous photothermal conversion and photocatalytic reactions. The MoO3-x nanoparticles of low reduction degree are decorated on hydrophilic cotton cloth to prepare a MCML evaporator toward rapid water production, pollutant degradation, as well as electricity generation. The obtained MCML evaporator has a strong local light-to-heat effect, which can be attributed to excellent photothermal conversion via the local surface plasmon resonance effect in MoO3-x nanoparticles and the low heat loss of the evaporator. Meanwhile, the rich surface area of MoO3-x nanoparticles and the localized photothermal effect together effectively accelerate the photocatalytic degradation reaction of the antibiotic tetracycline. With the benefit of these advantages, the MCML evaporator attains a superior evaporation rate of 4.14 kg m-2 h-1, admirable conversion efficiency of 90.7%, and adequate degradation efficiency of 96.2% under 1 sun irradiation. Furthermore, after being rationally assembled with a thermoelectric module, the hybrid device can be employed to generate 1.0 W m-2 of electric power density. This work presents an effective complementary strategy for freshwater production and sewage treatment as well as electricity generation in remote and off-grid regions.

3.
J Hazard Mater ; 467: 133654, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38341894

ABSTRACT

Self-propelled micro/nanomotors have attracted great attention for environmental remediation, however, their use for radioactive waste detection and removal has not been addressed. Engineered micromotors that are able to combine fast detection and highly adsorptive capability are promising tools for radioactive waste management but remain challenging. Herein, we design self-propelled micromotors based on zeolite imidazolate framework (ZIF-8)-hydrogel composites via inverse emulsion polymerization and show their potential for efficient uranium detection and removal. The incorporation of magnetic ferroferric oxide nanoparticles enables the magnetic recycling and actuation of the single micromotors as well as formation of swarms of worm-like or tank-treading structure. Benefited from the enhanced motion, the micromotors show fast and high-capacity uranium adsorption (747.3 mg g-1), as well as fast uranium detection based on fluorescence quenching. DFT calculation confirms the strong binding between carboxyl groups and uranyl ions. The combination of poly(acrylic acid-co-acrylamide) with ZIF-8 greatly enhances the fluorescence of the micromotor, facilitating the high-resolution fluorescence detection. A low detection limit of 250 ppb is reached by the micromotors. Such self-propelled micromotors provide a new strategy for the design of smart materials in remediation of radioactive wastewater.

4.
Small ; 20(26): e2308318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258396

ABSTRACT

In nature, many organisms are capable of self-organizing into collective groups through local communications to perform complex tasks that individuals cannot complete. To date, the reported artificial microswarms either rely on toxic chemical reactions for communication or lack the hierarchical controllability and functionality, which is unfavorable for practical applications. To this end, this exploits the ion-exchange reaction enabled hierarchical swarm composed of cationic ion exchange resin and magnetic microspheres of internal information exchange. The swarm is reconfigurable under magnetic fields, generating ordered structures of controllable mobilities and even reversed hierarchy, able to navigate in confined and complex environments. Moreover, the swarm shows interesting communications among each other, such as merging, splitting, and member exchange, forming multi-leader groups, living crystals, and complex vortices. Furthermore, the swarm functions as a dual-functional microreactor, which can load, transport, and release drugs in a pH-enhanced manner, as well as effectively degrade antibiotics via light-enhanced Fenton-like reaction in polluted water. The organized structure of the swarm greatly improves the drug loading/transport efficiency and the local concentration of catalysts for fast pollutant removal. This design lays the foundation for the design of dual-functional micro/nanorobots for intelligent drug delivery and advanced environmental remediation.

5.
Int J Biol Macromol ; 256(Pt 2): 128469, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38040153

ABSTRACT

Conventional polylactic acid (PLA) melt plasticization and toughening processes are typically achieved at the expense of PLA strength and transparency, which is clearly detrimental to its application in areas such as smart home and food packaging. Herein, an ultraviolet (UV)-protective PLA-based composite (PP6) that simultaneously achieves high strength (63.3 MPa), high plasticity (125.3 %), and enhanced toughness (4.3 kJ/m2) by adding only 6 wt% poly(3-hydroxybutyrate-4-hydroxybutyrate) (P34HB) under the assist of 1 wt% chain extender was prepared using melt blending technique. Benefiting from the cross-linking effect of the chain extender and the elongational flow during processing, the compatibility between P34HB and PLA, as well as the thermomechanical properties, heat resistance, and biodegradable properties of the composite, have been enhanced significantly. The extremely low melt enthalpy (1.9 J/g) and the low crystallinity PLA phase contribute to an appropriate transparency (78.3 % of glass in 400-1100 nm). The prepared composites display mid- and long-wave UV-protective performance, which is superior to conventional industrial glasses. Through the superior elongational rheology technology, PP6 maintains favorable overall properties even after six thermomechanical cycles. Collectively, the composite fabricated in this work is an attractive candidate for future applications such as smart windows, food packaging, agricultural films, and biomedical applications.


Subject(s)
Glass , Polyesters , Hot Temperature , Rheology
6.
Small ; : e2306798, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38059804

ABSTRACT

Swimming microrobots that are actuated by multiple stimuli/fields display various intriguing collective behaviors, ranging from phase separation to clustering and giant number fluctuation; however, it is still chanllenging to achieve multiple responses and functionalities within one colloidal system to emulate high environmental adaptability and improved tasking capability of natural swarms. In this work, a weak ion-exchange based swarm is presented that can self-organize and reconfigure by chemical, light, and magnetic fields, showing living crystal, amorphous glass, liquid, chain, and wheel-like structures. By changing the frequency and strength of the rotating magnetic field, various well-controlled and fast transformations are obtained. Experiments show the high adaptability and functionality of the microrobot swarm in delivering drugs in confined spaces, such as narrow channels with turns or obstacles. The drug-carrying swarm exhibits excellent chemtherapy for Hela and CT26 cells due to the pH-enhanced drug release and locomotion. This reconfigurable microswarm provides a new platform for biomedical and environmental applications.

7.
Nanomaterials (Basel) ; 13(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37947744

ABSTRACT

Swarms of self-propelled micromotors can mimic the processes of natural systems and construct artificial intelligent materials to perform complex collective behaviors. Compared to self-propelled Janus micromotors, the isotropic colloid motors, also called micromotors or microswimmers, have advantages in self-assembly to form micromotor swarms, which are efficient in resistance to external disturbance and the delivery of large quantity of cargos. In this minireview, we summarize the fundamental principles and interactions for the assembly of isotropic active particles to generate micromotor swarms. Recent discoveries based on either catalytic or external physical field-stimulated micromotor swarms are also presented. Then, the strategy for the reconstruction and motion control of micromotor swarms in complex environments, including narrow channels, maze, raised obstacles, and high steps/low gaps, is summarized. Finally, we outline the future directions of micromotor swarms and the remaining challenges and opportunities.

8.
Adv Sci (Weinh) ; 10(27): e2300866, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37526332

ABSTRACT

Most synthetic microswimmers do not reach the autonomy of their biological counterparts in terms of energy supply and diversity of motions. Here, this work reports the first all-aqueous droplet swimmer powered by self-generated polyelectrolyte gradients, which shows memory-induced chirality while self-solidifying. An aqueous solution of surface tension-lowering polyelectrolytes self-solidifies on the surface of acidic water, during which polyelectrolytes are gradually emitted into the surrounding water and induce linear self-propulsion via spontaneous symmetry breaking. The low diffusion coefficient of the polyelectrolytes leads to long-lived chemical trails which cause memory effects that drive a transition from linear to chiral motion without requiring any imposed symmetry breaking. The droplet swimmer is capable of highly efficient removal (up to 85%) of uranium from aqueous solutions within 90 min, benefiting from self-propulsion and flow-induced mixing. These results provide a route to fueling self-propelled agents which can autonomously perform chiral motion and collect toxins.

9.
Small ; 19(49): e2303741, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37603386

ABSTRACT

Writing is an ancient communication technique dating back at least 30 000 years. While even sophisticated contemporary writing techniques hinge on solid surfaces for engraving or the deposition of ink, writing within a liquid medium requires a fundamentally different approach. The study here demonstrates the writing of lines, letters, and complex patterns in water by assembling lines of colloidal particles. Unlike established techniques for underwater writing on solid substrates, these lines are fully reconfigurable and do not require any fixation onto the substrate. Exploiting gravity, an ion-exchange bead (pen) is rolled across a layer of sedimented colloidal particles (ink). The pen evokes a hydrodynamic flow collecting ink-particles into a durable, high-contrast line along its trajectory. Deliberate substrate-tilting sequences facilitate pen-steering and thus drawing and writing. The experiments are complemented with a minimal model that quantitatively predicts the observed parameter dependence for writing in fluids and highlights the generic character of writing by line-assembly. Overall, the approach opens a versatile route for writing, drawing, and patterning fluids-even at the micro-scale.

10.
J Phys Condens Matter ; 35(41)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37402385

ABSTRACT

Liquid heliums are intriguing substance. Superfluid states below certain critical temperatures, notably liquid helium-4 and helium-3 exhibit ultra-high thermal conductivity ( TC) in the superfluid phase. However, the microscopic origin of the TC of liquid heliums in the normal phase remains unclear. In this work, we employ the thermal resistance network model to calculate the thermal conductivities of normal liquid helium-4 (He I) and helium-3. Predicted values are not only in good agreement with the measurements but also reproduce the experimental trend of TC increasing with temperature and pressure.

11.
Small ; 19(28): e2300915, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36970813

ABSTRACT

The integration of fog collection and solar-driven evaporation has great significance in addressing the challenge of the global freshwater crisis. Herein, a micro/nanostructured polyethylene/carbon nanotubes foam with interconnected open-cell structure (MN-PCG) is fabricated using an industrialized micro extrusion compression molding technology. The 3D surface micro/nanostructure provides sufficient nucleation points for tiny water droplets to harvest moisture from humid air and a fog harvesting efficiency of 1451 mg cm-2 h-1 is achieved at night. The homogeneously dispersed carbon nanotubes and the graphite oxide@carbon nanotubes coating endow the MN-PCG foam with excellent photothermal properties. Benefitting from the excellent photothermal property and sufficient steam escape channels, the MN-PCG foam attains a superior evaporation rate of 2.42 kg m-2 h-1 under 1 Sun illumination. Consequently, a daily yield of ≈35 kg m-2 is realized by the integration of fog collection and solar-driven evaporation. Moreover, the robust superhydrophobicity, acid/alkali tolerance, thermal resistance, and passive/active de-icing properties provide a guarantee for the long-term work of the MN-PCG foam during practical outdoor applications. The large-scale fabrication method for an all-weather freshwater harvester offers an excellent solution to address the global water scarcity.

12.
ChemSusChem ; 16(2): e202201935, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36441157

ABSTRACT

Converting poly(ethylene terephthalate) (PET) into metal-organic frameworks (MOFs) has emerged as a promising innovation for upcycling of waste plastics. However, previous solvothermal methods suffer from toxic solvent consumption, long reaction time, high pressure, and high temperature. Herein, a mechanochemical milling strategy was reported to transform waste PET into a series of MOFs with high yields. This strategy had the merits of solvent-free conditions, ambient reaction temperature, short running time, and easy scale-up for large-scale production of MOFs. The as-prepared MOFs exhibited definite crystal structure and porous morphology composed of agglomerated nanoparticles. It was proven that, under mechanochemical milling, PET was firstly decomposed into 1,4-benzenedicarboxylate, which acted as linkers to coordinate with metal ions for forming fragments, followed by the gradual arrangement of fragments into MOFs. This work not only promotes high value-added conversion of waste polyesters but also offers a new opportunity to produce MOFs in a green and scalable manner.

14.
Front Pharmacol ; 13: 955421, 2022.
Article in English | MEDLINE | ID: mdl-36210803

ABSTRACT

The goal of the study was to analyze whether WJP can alleviate visceral hypersensitivity in IBS-D model rats. In this study, 36 Sprague-Dawley (SD) rats aged 4 weeks old were randomly divided into two groups: the model group (n = 27) and the control group (n = 9). The rat model of IBS-D was established by modified compound methods for 4 weeks. After the modification, IBS-D rats were randomly divided into three groups, namely, the IBS-D model group (n = 9), the positive drug group (n = 9), and the WJP group (n = 9), with different interventions, respectively. The control group was fed and allowed to drink water routinely. The Bristol stool scale scores were used to assess the severity of diarrhea. Abdominal withdrawal reflex (AWR) scores were used to assess visceral sensitivity. Expression of TNF-α was measured, and histopathological examinations were performed to assess colon inflammation in IBS-D model rats. Key factors of the MEK/ERK signal pathway in the tissue of the colon and hippocampus were measured to analyze the mechanism of WJP. Compared with the control group, the Bristol stool scale scores in the model group were significantly increased (p < 0.0001). The scores of the WJP group were significantly decreased compared with the model group (p = 0.0001). Compared with the control group, AWR scores in the model group at each pressure level were significantly increased (p = 0.0003, p < 0.0001, p = 0.0007, and p = 0.0009). AWR scores of the WJP group were significantly decreased compared with the model group (p = 0.0003, p = 0.0007, p = 0.0007, and p = 0.0009). Compared with the control group, the model group had significantly higher expression of TNF-α in the colon tissue (p < 0.0001). However, the WJP group had significantly lower level of TNF-α compared with the model group (p < 0.0001). Meanwhile, compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue was significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the colon tissue were significantly decreased in the WJP group (p < 0.0001, p = 0.0019, and p = 0.0013). Compared with the control group, the relative expression of the proteins of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue were significantly increased in the model group (p < 0.0001). Compared with the model group, the relative expression of the proteins in the hippocampus tissue were significantly decreased in the WJP group (p = 0.0126, p = 0.0291, and p = 0.0145). The results indicated that WJP can alleviate visceral hypersensitivity in IBS-D model rats, possibly mediated by downregulating the expression of TNF-α, p-MEK1/2, p-ERK1, and p-ERK2 in the colon tissue. At the same time, WJP also affects downregulating the expression of p-MEK1/2, p-ERK1, and p-ERK2 in the hippocampus tissue.

15.
ACS Appl Mater Interfaces ; 14(40): 45533-45544, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36178300

ABSTRACT

The integration of renewable solar energy-driven interfacial evaporation and photocatalysis has recently emerged as one of the most promising technologies for simultaneous freshwater production and pollutant removal. However, the construction of an advanced integrated system with the merit of a fast supply of water and pollutant molecules remains challenging for efficient solar-driven evaporation and photocatalytic performance. Herein, inspired by the transpiration of plants, we fabricate a biomimetic, vertically channeled polypyrrole/foam-like carbon nitride/poly(vinyl alcohol) hydrogel (PCH) by directional freeze-drying. We prove that the vertically aligned channels not only reduce heat loss and improve energy conversion efficiency but also facilitate the transport of water and organic pollutants to the air-water interface. Benefiting from the advantages above, the PCH evaporator presents a high solar evaporation efficiency of 92.5%, with the evaporation rate achieving 2.27 kg m-2 h-1 under 1 kW m-2 irradiation, exceeding many advanced interfacial solar-driven evaporators. Meanwhile, PCH reaches a degradation efficiency of 90.6% within 1 h when dealing with tetracycline (a typical antibiotic)-polluted water, remarkably higher than that of the hydrogel without vertically aligned channels (68.6%). Furthermore, the as-formed reactive oxygen species effectively kill Gram-positive and Gram-negative bacterial in the source water, achieving the all-round water purification. In an outdoor experiment, after 11 h of sunlight irradiation, the tetracycline degradation efficiency and freshwater production of the PCH evaporator rise to 99.0% and 6.2 kg m-2, respectively. This work highlights the novel biomimetic approach to fabricate multifunctional photothermal materials for simultaneous freshwater production and polluted-water remediation.


Subject(s)
Environmental Pollutants , Water Purification , Anti-Bacterial Agents , Biomimetics , Hydrogels , Polymers , Polyvinyl Alcohol , Pyrroles , Reactive Oxygen Species , Tetracyclines , Water
16.
ACS Appl Mater Interfaces ; 14(39): 44271-44281, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36150032

ABSTRACT

Micro/nanomotors have emerged as a vibrant research topic in biomedical and environmental fields due to their attractive self-propulsion as well as small-scale functionalities. However, single actuated micro/nanomotors are not adaptive in facing intricate natural and industrial environments. Herein, we propose a new dual-mode-driven micromotor based on foam-like carbon nitride (f-C3N4) with precipitated Fe3O4 nanoparticles, namely, Fe3O4/f-C3N4, powered by chemical/magnetic stimuli for rapid reduction of organic pollutants. The Fe3O4/f-C3N4 motor composed of a three-dimensional (3D) porous "foam-like" structure and precipitated Fe3O4 nanoparticles (ca. 50 nm) not only exhibits efficient photocatalytic performance under visible light but also shows versatile and programmable motion behavior under the control of external magnetic fields. The aggregation of the micromotor under an external rotating magnetic field further enhances the catalytic activity by the increased local catalyst concentration. Furthermore, the magnetic property endows the micromotor with easy recyclability. This study provides a novel dual-mode-driven micromotor for antibiotics removal with magnetic field and light-enhanced performance in industrial wastewater treatment at a low cost.

17.
Biomed Environ Sci ; 35(8): 681-687, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36127780

ABSTRACT

Objective: This study is to obtain precise data on iron physiological requirements in Chinese children using single stable isotope tracer technique. Methods: Thirty boys (10.6 ± 0.2 years) and 27 girls (10.4 ± 0.2 years) were received oral 6 mg 57Fe each day for 5 consecutive days. Venous blood samples were subsequently drawn to examine the change of total iron concentration and 57Fe abundance at day 0, 14, 28, 60, 90, 180, 360, 450, 540, 630, 720. The iron physiological requirement was calculated by iron loss combined with iron circulation rate once 57Fe abundance stabilized in human body. Results: The iron physiological requirement was significantly lower in boys than those values in girls (16.88 ± 7.12 vs. 18.40 ± 8.81 µg/kg per day, P < 0.05). Correspondingly, the values were calculated as 722.46 ± 8.43 µg/day for boys and 708.40 ± 7.55 µg/day for girls, respectively. Considering nearly 10% iron absorption rate, the estimated average iron physiological requirement was 6.0 mg/day in boys and 6.2 mg/day in girls. Conclusion: This study indicate that iron physiological requirement could require more daily iron intake in girls as compare with the values in boys having the same body weight. These findings would be facilitate to the new revised dietary reference intakes.


Subject(s)
Iron , Nutritional Status , Body Weight , Child , China , Female , Humans , Isotopes , Male
18.
NPJ Microgravity ; 8(1): 29, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35918349

ABSTRACT

The greatest challenge of electrostatic levitation for containerless material processing is the stable control of charged material during heating. Recently, high-precision self-adaptive control of electrostatic levitation has been achieved in China's Space Station. Based on the 1D and 3D co-simulation analysis, an optimal scheduling of control strategies of sample release and retrieval in space is developed. Both simulation results and on-orbit experiments demonstrated that the inversion of surface charge is responsible for the heating induced material instability. On-orbit experiments indicated that under laser illuminations, the net surface charge of metal Zr changed from positive to negative at 900 K and from negative to positive at 1300 K. The possible physical mechanism of the charge inversion of heated material is discussed.

19.
J Colloid Interface Sci ; 626: 231-240, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35797868

ABSTRACT

Solar evaporation which ultilizes the sustainable solar energy for freshwater production from waste or saline water is one of the most attractive technologies to simultaneously address energy and freshwater crisis. Nevertheless, high energy consumption of water-vapor transformation greatly restricts the practical applications of solar-driven water purification. Herein, we report hybrid hydrogels formed by introducing biomass, starch, and carbon nanotube into hydrophilic polyvinyl alcohol in a cost-effective route, used as multifunctional evaporators. The interpenetrating network has good hydrophilicity, fast water transport and adjustable state of water molecules, which reduces the enthalpy of water vaporization to promote the evaporation process. Thus, the obtained hydrogel evaporator possesses an evaporation rate of 2.44 kg m-2h-1 with 95% efficiency under one-sun, and is capable of producing clean water from various types of wastewater, including salty, acidic, alkaline and organic polluted water, with long-term durability and stability. It also presents excellent antibacterial, salt resistance and self-cleaning capabilities, suitable for practical applications. More notably, with abundant OH groups from starch, the hybrid hydrogel can effectively adsorb heavy metal ions and organic dyes via formation of chelating and hydrogen bonds. Therefore, this work provides a new approach for portable and cost-effective solar-driven wastewater purification.


Subject(s)
Hydrogels , Water Purification , Biomass , Starch , Sunlight
20.
Small ; 18(17): e2200175, 2022 04.
Article in English | MEDLINE | ID: mdl-35307967

ABSTRACT

Solar evaporation is one of the most attractive and sustainable approaches to address worldwide freshwater scarcity. Unfortunately, it is still a crucial challenge that needs to be confronted when the solar evaporator faces harsh application environments. Herein, a promising polymer molding method that combines melt blending and compression molding, namely micro extrusion compression molding, is proposed for the cost-effective fabrication of lightweight polyethylene/graphene nanosheets (PE/GNs) foam with interconnected vapor escape channels and surface micro-nanostructures. A contact angle of 155 ± 2°, a rolling angle of 5 ± 1° and reflectance of ≈1.6% in the wavelength range of 300-2500 nm appears on the micro-nanostructured PE/GNs foam surface. More interestingly, the micro-nanostructured PE/GNs foam surface can maintain a robust superhydrophobic state under dynamic impacting, high temperature and acid-/alkali solutions. These results mean that the micro-nanostructured PE/GNs foam surface possesses self-cleaning, anti-icing and photothermal deicing properties at the same time. Importantly, the foam exhibits an evaporation rate of 1.83 kg m-2 h-1 under 1 Sun illumination and excellent salt rejecting performance when it is used as a self-floating solar evaporator. The proposed method provides an ideal and industrialized approach for the mass production of solar evaporators suitable for practical application environments.


Subject(s)
Graphite , Nanostructures , Water Purification , Alkalies , Cost-Benefit Analysis , Hydrophobic and Hydrophilic Interactions , Optical Tweezers , Polyethylene
SELECTION OF CITATIONS
SEARCH DETAIL
...