Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Biodivers Data J ; 8: e59007, 2020.
Article in English | MEDLINE | ID: mdl-33223916

ABSTRACT

BACKGROUND: Thesium brevibracteatum P.C.Tam was described, based on the specimen L.C.Chiu 5128 collected from Inner Mongolia, China. The name Thesium brevibracteatum Sumnev. is validly published and described for the type (Korotkova E. E. et Titov V. S. 1502) collected from Uzbekistan. T. brevibracteatum P.C.Tam is a later homonym of T. brevibracteatum Sumnev. NEW INFORMATION: We propose T. longiperianthium as the replacemen name for T. brevibracteatum P.C. Tam.

2.
PeerJ ; 7: e8047, 2019.
Article in English | MEDLINE | ID: mdl-31844567

ABSTRACT

Acidobacteria is found to be dominant and abundant in forest soil, and performs specific ecological functions (such as cellulose decomposition and photosynthetic capacity, etc.). However, relative limited is known about its changing patterns after a fire interruption. In this study, the response of soil Acidobacteria to a wildfire disturbance was investigated using the Illumina MiSeq sequencing system. The research area was classified by different severities of fire damage (high, moderate, and low severity, and an unburnt area), and samples were collected from various soil layers (0-10 cm as topsoil; 10-20 cm as subsoil). We obtained a total of 986,036 sequence reads; 31.77% of them belonged to Acidobacteria. Overall, 18 different Acidobacteria subgroups were detected, with subgroups 4, 6, 1, 3, and 2 the most abundant, accounting for 31.55%, 30.84%, 17.42%, 6.02%, and 5.81% of acidobacterial sequences across all samples, respectively. Although no significant differences in acidobacterial diversity were found in the same soil layer across different fire severities, we observed significantly lower numbers of reads, but higher Shannon and Simpson indices, in the topsoil of the high-severity fire area than in the subsoil. Non-metric multidimensional scaling (NMDS) analysis and permutational multivariate analysis of variance (PERMANOVA) also revealed significant differences in the acidobacterial community structure between the two soil layers. Soil pH, total nitrogen, NH4 +-N, the Shannon index of understory vegetation and canopy density were the major drivers for acidobacterial community structure in the topsoil, while soil pH and organic matter were significant factors in the subsoil. A variance partitioning analysis (VPA) showed that edaphic factors explained the highest variation both in the topsoil (15.6%) and subsoil (56.3%). However, there are large gaps in the understanding of this field of research that still need to be explored in future studies.

3.
Sci Rep ; 9(1): 1148, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718899

ABSTRACT

In recent years, the investigation of fire disturbance of microbial communities has gained growing attention. However, how the bacterial community varies in response to different severities of fire at different soil depths is largely unknown. We utilized Illumina MiSeq sequencing to illustrate the changing patterns of the soil bacterial community following low-, moderate- and high-severity wildfire in the topsoil (0-10 cm) and subsoil (10-20 cm), 6 months after the fire. Acidobacteria, Proteobacteria, Actinobacteria, Verrucomicrobia and Chloroflexi were the dominant phyla among all samples. Bacterial alpha diversity (i.e. Shannon and Simpson indices) in the topsoil was significantly higher than that in the subsoil after a high-severity wildfire. Non-metric multidimensional scaling (NMDS) analysis and permutational multivariate analysis of variance (PERMANOVA) revealed significant differences in the bacterial community structure between the two soil layers. Soil pH, ammonium nitrogen (NH4+-N) and total nitrogen were the main factors in shaping the bacterial community structure, of which soil pH was the most robust in both soil layers. Our study reveals that wildfire results in short-term changes in soil bacterial community. However, a long-term monitoring of microbial variation after burning is also essential.


Subject(s)
Bacteria/growth & development , Biodiversity , Soil Microbiology , Soil/chemistry , Wildfires , Bacteria/classification , Bacterial Physiological Phenomena , Forests , Hydrogen-Ion Concentration , Nitrogen , Pinus/microbiology , Stress, Physiological
4.
PLoS One ; 13(10): e0205885, 2018.
Article in English | MEDLINE | ID: mdl-30332483

ABSTRACT

China harbors diversified forest types, from tropical rainforest to boreal coniferous forest, and has implemented large-scale reforestation/afforestation programs over the past several decades. However, little information is available on changes in China's forest area and the causes. In this study, we used the classified forest distribution thematic map derived from Normalized Difference Vegetation Index (NDVI) datasets and a revised IPAT model to examine China's forest area change and the possible driving factors from 1982 to 2006. Overall, NDVI-derived forest areas were numerically consistent with those reported in the 3rd, 4th, 5th, and 6th National Forest Inventories, respectively. Over the past 25 years, China's forest area was estimated to have an average of 169.18 million hectares with an annual increase of 0.15 million hectares (c.a. a total net increment of 3.60 million hectares), which is equivalent to 0.089% of the relative annual change rate. However, a large difference in the changing rate and direction of forest area at the province level was found; for instance, forest area has declined in 10 provinces, mainly in Northeastern and Southern China, while 21 provinces showed an increase. The changes were most likely attributed to the policy regarding the import and export of timber and affluence (per capita gross domestic product), and both contributed more than 80% of the total contribution of the six factors of the revised IPAT model.


Subject(s)
Conservation of Natural Resources , Forests , Trees , Algorithms , Biomass , China , Environmental Monitoring/methods , Geography , Public Policy , Satellite Imagery
5.
ScientificWorldJournal ; 2014: 326782, 2014.
Article in English | MEDLINE | ID: mdl-25243208

ABSTRACT

The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.


Subject(s)
Climate Change , Droughts , Fires , Forests , Rain , China , Fires/prevention & control
6.
Ying Yong Sheng Tai Xue Bao ; 24(2): 331-7, 2013 Feb.
Article in Chinese | MEDLINE | ID: mdl-23705375

ABSTRACT

In order to understand the effects of fuel loadings spatial distribution on forest fire kinds and behaviors, the canopy fuels and floor fuels of Pinus yunnanensis forests with different canopy density, diameter at breast height (DBH), tree height, and stand age and at different altitude, slope grade, position, and aspect in Southwest China were taken as test objects, with the fuel loadings and their spatial distribution characteristics at different vertical layers compared and the fire behaviors in different stands analyzed. The relationships between the fuel loadings and the environmental factors were also analyzed by canonical correspondence analysis (CCA). In different stands, there existed significant differences in the vertical distribution of fuels. Pinus yunnanensis-Qak-Syzygium aromaticum, Pinus yunnanensis-oak, and Pinus yunnanensis forests were likely to occur floor fire but not crown fire, while Pinus yunnanensis-Platycladus orientalis, Pinus yunnanensis-Keteleeria fortune, and Keteleeria fortune-Pinus yunnanensis were not only inclined to occur floor fire, but also, the floor fire could be easily transformed into crown fire. The crown fuels were mainly affected by the stand age, altitude, DBH, and tree height, while the floor fuels were mainly by the canopy density, slope grade, altitude, and stand age.


Subject(s)
Conservation of Natural Resources , Fires , Forestry/methods , Pinus/growth & development , China , Ecosystem , Fires/prevention & control , Forecasting , Pinus/anatomy & histology , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL
...