Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 649: 435-444, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37354800

ABSTRACT

Herein, a soft-template strategy involving the cationic surfactants has been successfully applied to size-controlled synthesis of hierarchical porous Fe-N/C for the first time. Specifically, a small amount of Fe and cationic surfactants can be uniformly doped into the zinc-based zeolite imidazole framework (ZIF-8) crystal particles and the cationic surfactants play a critical role in the formation of hierarchically porous Fe-ZIF-8@surfactant precursors. When the Fe-ZIF-8@surfactant is subsequently pyrolyzed, atomically dispersed Fe-Nx coordination structures can be in-situ converted to Fe-N/C, while the cationic surfactants decompose to form a carbon matrix to encapsulate the active sites, thereby preventing the aggregation of nanoparticles to a certain extent. As a result, the combined Fe nanocrystals and atomically dispersed Fe-Nx in the graphitic carbon matrix generate a synergistic effect to boost the electrocatalytic behaviors with a more positive half-wave potential (0.92 V) for oxygen reduction reaction (ORR) and a lower overpotential (420 mV at 10 mA cm-2) for oxygen evolution reaction (OER). As a proof of concept, the Fe-N/C@TTAB based zinc-air batteries (ZABs) present an outstanding peak power density (107.9 mW cm-2) and a superior specific capacity (706.3 mAh g-1) with robust cycling stability over 900 cycles for 150 h, which are better than the commercial Pt/C + IrO2 based ZABs.

2.
ACS Appl Mater Interfaces ; 14(17): 20257-20267, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35451814

ABSTRACT

Thermodynamically induced tensile stress in the perovskite film will lead to the formation of atomic vacancies, seriously destroying the photovoltaic efficiency stability of the perovskite solar cells (PSCs). Among them, cations and halide anions vacancies are unavoidable; these point vacancies are considered to be a major source of the ionic migration and perovskite degradation at the crystal boundary and surface of the perovskite films. Here, we use choline bromide to modify the perovskite film by occupying the atomic defects in the CsPbBr3 perovskite film. The results show that the zwitterion quaternary ammonium ions and bromide ions in choline bromide can simultaneously occupy the Cs+ cation and Br- anions vacancies in the perovskite film by the ionic bonding effect, for which the defect-state density on the surface of the perovskite film can be significantly reduced, leading to the effective enhancement of carrier lifetime. In addition, the residual stress at the crystal boundary can be effectively reduced by lowering the Young's modulus in the CsPbBr3 perovskite film. As a result, the optimized device achieves a photoelectric conversion efficiency (PCE) of 9.06% with an increase of 41.1% compared to the control device with a PCE of 6.42%. Most importantly, the newborn thermal stress due to thermal expansion during heat working conditions can be transferred from the polycrystalline perovskite to the carbon layer by the matched Young's modulus, thus resulting in improved stability perovskite film under environmental conditions. The work provides new insights for preparing high-quality perovskite films with low defect-state density and residual stress.

3.
Nanoscale ; 12(38): 19644-19654, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32966500

ABSTRACT

In this study, we, for the first time, demonstrate a general solid-phase pyrolysis method to synthesize hybrid transition metal nanocrystal-embedded graphitic carbon nitride nanosheets, namely M-CNNs, as a highly efficient oxygen electrocatalyst for rechargeable Zn-air batteries (ZABs). The ratios between metallic acetylacetonates and the g-C3N4 precursor can be controlled where Fe-CNNs-0.7, Ni-CNNs-0.7 and Co-NNs-0.7 composites have been optimized to exhibit superior ORR/OER bifunctional electrocatalytic activities. Specifically, Co-CNNs-0.7 exhibited not only a comparable half-wave potential (0.803 V vs. RHE) to that of the commercial Pt/C catalyst (0.832 V) with a larger current density for the ORR but also a lower overpotential (440 mV) toward the OER compared with the commercial IrO2 catalyst (460 mV), revealing impressive application in rechargeable ZABs. As a result, ZABs using Co-CNNs-0.7 as the cathode exhibited an excellent peak power density of 85.3 mW cm-2 with a specific capacity of 675.7 mA h g-1 and remarkable cycling stability of 1000 cycles, outperforming the commercially available Pt/C + IrO2 catalysts. This study highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.

4.
Sci Rep ; 10(1): 9157, 2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32514011

ABSTRACT

The high cost and platinum dissolution issues of counter electrodes (CEs) are two core problems for the development of dye-sensitized solar cells (DSSCs). In this work, different CEs based on binary alloy Ru81.09Co18.91, Ru80.55Se19.45 and Co20.85Se79.15 nanostructures for DSSCs were successfully synthesized and investigated by a facile and environmentally friendly approach. Here, we found that the Co20.85Se79.15 alloy CE-based device yields the higher photoelectric conversion efficiency of 7.08% compared with that (5.80%) of the DSSC using a pure Pt CE because of the larger number of active sites with improved charge transferability and reduced interface resistance by matching work function with the I3‒/I‒ redox electrolyte. The inexpensive synthesis method, cost-effectiveness and superior catalytic activity of the Co20.85Se79.15 alloy may open up a new avenue for the development of CEs for DSSCs in the near future.

5.
ACS Appl Mater Interfaces ; 10(41): 35571-35579, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30152235

ABSTRACT

We demonstrate, for the first time, a new method of fabricating hybrid MoS2/poly(ethyleneimine)-modified graphene oxide (PEI-GO) composites assembled through electrostatically charged interaction between the negatively charged MoS2 nanosheets and positively charged PEI-GO in an aqueous solution. The GO can not only improve the electronic conductivity of the MoS2/PEI-GO composites, leading to an excellent charge-transfer network, but also hamper the restacking of MoS2 nanosheets. The composition ratios between MoS2 and PEI-GO were also optimized with the highest specific capacitance of 153.9 F g-1 where 96.0% of the initial specific capacitance remains after 6800 cycles. The specific capacitance of only 117.5 F g-1 was observed for the pure MoS2 nanosheets, and 68.2% of the initial specific capacitance was achieved after 5000 cycles. The excellent electrochemical performance of the hybrid MoS2/PEI-GO composites was demonstrated by establishing an asymmetric supercapacitor with a MoS2/PEI-GO-based negative electrode and an activated-carbon positive electrode. The asymmetric supercapacitor provided a maximum capacitance of 42.9 F g-1, and 93.1% of the initial capacitance was maintained after 8000 cycles. Furthermore, a MoS2/PEI-GO//activated-carbon asymmetric supercapacitor delivered an energy density of 19.3 W h kg-1 and a power density of 4500 W kg-1, indicating the potential of the hybrid MoS2/PEI-GO composites in electrochemical energy storage applications.

6.
Anal Chem ; 87(21): 11150-6, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26478177

ABSTRACT

Here we report a novel solid-state ECL sensor for ultrasensitive sensing of glutathione (GSH) based on ferrocyanide-ferricyanide redox couple (Fe(CN)6(3-/4-)) induced electrochemiluminescence (ECL) amplification of carbon dots (C-dots). The electropolymerization of C-dots and (11-pyrrolyl-1-yl-undecyl) triethylammonium tetrafluoroborate (A2) enabled immobilization of the hydrophilic C-dots on the surface of glassy carbon electrode (GCE) perfectly, while the excellent conductivity of polypyrrole was exploited to accelerate electron transfer between them. The Fe(CN)6(3-/4-) can expeditiously convert the C-dots and S2O8(2-) to C-dot(•-) and SO4(•-), respectively. High yields of the excited state C-dots (C-dots*) were obtained, and a ∼10-fold ECL amplification was realized. The C-dots* obtained through the recombination of electron-injected and hole-injected processes may be impeded due to the interference of GSH to K2S2O8. Therefore, the constructed sensor for GSH showed a detection limit down to 54.3 nM (S/N = 3) and a wide linear range from 0.1-1.0 µM with a correlation coefficient of 0.997.


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Ferricyanides/chemistry , Ferrocyanides/chemistry , Glutathione/analysis , Limit of Detection , Luminescence , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...