Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(18): e37549, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39309929

ABSTRACT

Since time immortal, people have used the well-known Chinese Chaenomeles fruit Xuan-Mugua for both traditional medicine and nourishment. With an aim to explore the digestive and antioxidant properties of the phenolics, Xuan-Mugua peel and pulp were extracted, digested and analyzed in vitro. Our results indicated that the total phenolics content (TPC), total flavonoids content (TFC) and the antioxidant activity of the peel were 3.24-8.89 times higher than that of pulp. The contents and activity of the peel and pulp consistently dropped in the sequence of oral, gastric, and small intestine digestions, from 22.78 % to 52.16 %. With a level of 1.590 ± 0.060 and 0.395 ± 0.015 mg g-1 dried weight in the peel and pulp, respectively, chlorogenic acid was the primary phenolic ingredient in Xuan-Mugua, with a promising recovery (81.39-82.23 %) during the digestion. According to these results, Xuan-Mugua exhibited an appreciable level of phenolic content and antioxidant activity during digestion, making it a suitable ingredient for use in functional foods.

2.
Science ; 385(6711): eado1022, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39172836

ABSTRACT

Spindle bipolarization, the process of a microtubule mass transforming into a bipolar spindle, is a prerequisite for accurate chromosome segregation. In contrast to mitotic cells, the process and mechanism of spindle bipolarization in human oocytes remains unclear. Using high-resolution imaging in more than 1800 human oocytes, we revealed a typical state of multipolar intermediates that form during spindle bipolarization and elucidated the mechanism underlying this process. We found that the minor poles formed in multiple kinetochore clusters contribute to the generation of multipolar intermediates. We further determined the essential roles of HAUS6, KIF11, and KIF18A in spindle bipolarization and identified mutations in these genes in infertile patients characterized by oocyte or embryo defects. These results provide insights into the physiological and pathological mechanisms of spindle bipolarization in human oocytes.


Subject(s)
Chromosome Segregation , Kinesins , Kinetochores , Microtubules , Oocytes , Spindle Apparatus , Humans , Oocytes/metabolism , Kinesins/metabolism , Kinesins/genetics , Kinetochores/metabolism , Spindle Apparatus/metabolism , Microtubules/metabolism , Female , Mutation , Spindle Poles/metabolism
3.
Adv Sci (Weinh) ; : e2400995, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39190572

ABSTRACT

In plants, vegetative growth is controlled by synergistic and/or antagonistic effects of many regulatory factors. Here, the authors demonstrate that the ubiquitin ligase seven in absentia1 (SINA1) mammalian BTF2-like transcription factors, Drosophila synapse-associated proteins, and yeast DOS2-like proteins (BSD1) function as a regulatory module to control vegetative growth in tomato via regulation of the production of plant growth hormone gibberellin (GA). SINA1 negatively regulates the protein level of BSD1 through ubiquitin-proteasome-mediated degradation, and the transgenic tomato over-expressing SINA1 (SINA1-OX) resembles the dwarfism phenotype of the BSD1-knockout (BSD1-KO) tomato plant. BSD1 directly activates expression of the BSD1-regulated gene 1 (BRG1) via binding to a novel core BBS (standing for BSD1 binding site) binding motif in the BRG1 promoter. Knockout of BRG1 (BRG1-KO) in tomato also results in a dwarfism phenotype, suggesting BRG1 plays a positive role in vegetative growth as BSD1 does. Significantly, GA contents are attenuated in transgenic SINA1-OX, BSD1-KO, and BRG1-KO plants exhibiting dwarfism phenotype and exogenous application of bioactive GA3 restores their vegetative growth. Moreover, BRG1 is required for the expression of multiple GA biosynthesis genes and BSD1 activates three GA biosynthesis genes promoting GA production. Thus, this study suggests that the SINA1-BSD1 module controls vegetative growth via direct and indirect regulation of GA biosynthesis in tomato.

4.
Plant Sci ; 347: 112207, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39084492

ABSTRACT

Carotenoids play a pivotal role in plant. Tagetes erecta, commonly called marigold, has increasing nutritional and economic value due to its high level of carotenoids in flower. However, the functional genes in the carotenoid biosynthesis of T. erecta have not been studied. In this work, three T. erecta varieties with flowers of yellow, yellow-orange and orange color, respectively, were examined for carotenoids composition and corresponding expression profiling of biosynthetic genes at four developmental stages. The results indicated that the varieties with higher lutein content, orange-flower 'Juwang' and yellow-orange 'Taishan', exhibited significant upregulation of genes in the upstream biosynthesis pathway, especially PDS (phytoene desaturase), PSY (phytoene synthase) and ZDS (zeta-carotene desaturase), whereas downstream carotenoid cleavage genes CCD (carotenoid cleavage dioxygenase) were markedly downregulated throughout flower development in the highest lutein containing variety 'Juwang'. Furthermore, marigold TePDS, TePSYS3 and TeZDS were isolated and transformed into tomato. Overexpression of TePDS or TeZDS resulted in the promotion of fruit ripening and accumulation of carotenoids in the transgenic lines. On the other hand, marigold TePSYS3 showed multiple effects, not only on fruit carotenogenesis but also on pigmentation patterns in vegetative tissues and plant growth. Taken together, the variations in expression profiles of the biosynthetic genes contribute to dynamic change in carotenoid levels and diversity of flower coloration in T. erecta. These functional genes of T. erecta were verified in tomato and provide targets for genetic improvement of fruit carotenoids accumulation.


Subject(s)
Carotenoids , Flowers , Fruit , Pigmentation , Solanum lycopersicum , Tagetes , Tagetes/metabolism , Tagetes/genetics , Carotenoids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Pigmentation/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
5.
J Assist Reprod Genet ; 41(5): 1233-1243, 2024 May.
Article in English | MEDLINE | ID: mdl-38536595

ABSTRACT

AIM: Abnormalities in oocyte maturation, fertilization, and early embryonic development are major causes of primary infertility in women who are undergoing IVF/ICSI attempts. Although many genetic factors responsible for these abnormal phenotypes have been identified, there are more additional pathogenic genes and variants yet to be discovered. Previous studies confirmed that bi-allelic PATL2 deficiency is an important factor for female infertility. In this study, 935 infertile patients with IVF/ICSI failure were selected for whole-exome sequencing, and 18 probands carrying PATL2 variants with a recessive inheritance pattern were identified. METHODS: We estimated that the prevalence contributed by PATL2 was 1.93% (18/935) in our study cohort. RESULTS: 15 novel variants were found in those families, including c.1093C > T, c.1609dupA, c.1204C > T, c.643dupG, c.877-2A > G, c.1228C > G, c.925G > A, c.958G > A, c.4A > G, c.1258T > C, c.1337G > A, c.1264dupA, c.88G > T, c.1065-2A > G, and c.1271T > C. The amino acids altered by the corresponding variants were highly conserved in mammals, and in silico analysis and 3D molecular modeling suggested that the PATL2 mutants impaired the physiologic function of the resulting proteins. Diverse clinical phenotypes, including oocyte maturation defect, fertilization failure, and early embryonic arrest might result from different variants of PATL2. CONCLUSIONS: These results expand the spectrum of PATL2 variants and provide an important reference for genetic counseling for female infertility, and they increase our understanding of the mechanisms of oocyte maturation arrest caused by PATL2 deficiency.


Subject(s)
Exome Sequencing , Fertilization in Vitro , Infertility, Female , Mutation , Nuclear Proteins , Phenotype , RNA-Binding Proteins , Sperm Injections, Intracytoplasmic , Adult , Female , Humans , Pregnancy , Infertility, Female/genetics , Infertility, Female/pathology , Mutation/genetics , Oocytes/growth & development , Oocytes/pathology , Pedigree , Nuclear Proteins/genetics , RNA-Binding Proteins/genetics
6.
Cryobiology ; 114: 104834, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065230

ABSTRACT

Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.


Subject(s)
Calcium , Cryopreservation , Animals , Mice , Cryopreservation/methods , Calcium/pharmacology , Oocytes , Freezing , Cryoprotective Agents/pharmacology
7.
Int J Clin Pract ; 2023: 4009061, 2023.
Article in English | MEDLINE | ID: mdl-37662867

ABSTRACT

Background: Leptin (LEP) is believed to play a crucial role in male reproduction, while the molecular mechanisms through which LEP affects the male reproductive system are unclear. LEP acts by binding to a leptin receptor (LEPR) which mediates its physiological action, but there are only limited studies on the function of LEPR in human sperm. Purpose: This study aimed to determine the Gln223Arg polymorphisms of the LEPR gene in human spermatozoa and evaluate their possible relationship with semen variables. Methods: The study was performed on Chinese men: 115 healthy subjects and 108 patients with primary and 98 with secondary infertility. Semen samples were obtained from all patients, and semen variables were analyzed. The genotypic and allelic frequencies of Gln223Arg polymorphism in spermatozoa were determined by PCR and restriction fragment length polymorphism (RFLP) analyses. Statistical analyses were performed using the chi-square test, the Kruskal-Wallis test, and the Mann-Whitney test. Results: There were no significant differences in genotypic or allelic frequency distributions of Gln223Arg polymorphism among men with primary infertility, secondary infertility, and controls. Similarly, semen volume and sperm concentration did not differ with the different genotypes in all groups of men. The percentages of motile sperm for AA + AG genotypes in men with primary infertility (31.98%) were significantly lower than those in secondary infertility, and control men with GG genotypes were 34.41% and 59.36%, respectively. At the same time, the percentages of normal morphology sperm for AA + AG genotypes in men with primary infertility (2.93%) were significantly lower than those in secondary infertility and control men with GG genotypes 3.71% and 6.54%, respectively. Conclusion: This study reveals a possible association between the Gln223Arg polymorphism of the LEPR gene in spermatozoa affecting spermatozoal membrane integrity and having a direct role in sperm motility.


Subject(s)
Infertility, Male , Receptors, Leptin , Sperm Motility , Humans , Male , East Asian People , Infertility, Male/genetics , Receptors, Leptin/genetics , Semen , Sperm Motility/genetics , Spermatozoa
8.
Plant Dis ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37669174

ABSTRACT

Hemerocallis citrina is a popular vegetable crop in China, due to abundant nutrients in its edible flower buds. In March 2021, serious symptoms of leaf spot were observed on nearly 90% cultivated H. citrina seedlings in the fields of Dazhou city (31°17'56″ N, 107°31'59″ E), Sichuan, China. Symptomatic leaves were collected from 15 seedlings in five different sampling sites (3 seedlings per site). Small pieces (5 × 3 mm) of lesion margin were excised, surface disinfected in 70% ethanol for 20 s and 1% sodium hypochlorite (NaClO) for 40 s, washed, dried, placed on potato dextrose agar (PDA) amended with streptomycin sulfate (50 mg/L) and incubated in dark at 25 ℃ for two days. Finally, eight purified isolates, HHC-FL22, HHC-FL23, HHC-FL25, HHC-FL26, HHC-FL27, HHC-FL28, HHC-FL29 and HHC-FL30, showing similar morphology were obtained through transferring hyphal tips to fresh PDA plates. On PDA plates, mycelia were initially white but gradually became light yellow, and scarlet diffusible pigments were also produced with time. On carnation leaf agar, our isolates produced slightly curved macroconidia with 4 to 8 septa that measured 3.1 to 5.7 × 36.8 to 69.3 µm (n = 30). Microconidia and chlamydospores were not observed. Our isolates were initially identified as Fusarium species based on morphological features (Leslie and Summerell 2006). To further confirm accurate identity, primers EF1/EF2 (O'Donnell et al. 2010), TRI1015B/TRI1013E (Hao et al. 2017), RPB1-F5/RPB1-G2R (O'Donnell et al. 2010), and fRPB2-5F/fRPB2-11aR and RPB2-5f2/RPB2-7cr (O'Donnell et al. 2012) were used to amplify gene sequences of translation elongation factor-1 alpha (TEF1), 3-O-acetyltransferase (Tri101), and DNA-directed RNA polymerase II largest (RPB1) and second largest subunit (RPB2), respectively. Our sequences were deposited in GenBank under accession numbers OQ860946 to OQ860953 (TEF1), OR393245 to OR393252 (Tri101), OP131893 to OP131900 (RPB1), and OQ860954 to OQ860961 and OP131885 to OP131892 (RPB2), respectively. BLASTN searches of our sequences showed 99 ~ 100% identity with TEF1 (FJ240301.1), Tri101 (FJ240345.1), RPB1 (MW233297.1) and RPB2 (KM361666.1) of F. ussurianum NRRL 45681, and 99.05 ~ 100% identity with TEF1 (FJ240305.1) and Tri101 (FJ240349.1) of F. ussurianum NRRL 45833, respectively. Two independent maximum-likelihood phylogenetic trees based on different combined datasets of TEF1, Tri101, RPB1 and RPB2 of Fusarium species confirmed that our isolates were F. ussurianum. To test pathogenicity, conidial suspension from HHC-FL23 (106 conidia / mL) were sprayed to seedlings of cultivar "chuanhuanghua No.1" (n = 3) and incubated in a greenhouse (25°C under 90% relative humidity, 16/8 h light/dark cycle). Controls were treated with ddH2O. Ten days post-inoculation, natural symptoms appeared on leaves inoculated with HHC-FL23, but control group seedlings remained disease-free. This experiment was repeated three times. All re-isolated pathogens from diseased leaves were molecularly and morphologically identified using methods described above. Consequently, the re-isolated fungi were identical to these inoculated. The leaf spot disease could cause foliar damage and even drastic yield loss of flower buds under severe conditions. To our knowledge, this is the first report of F. ussurianum causing leaf spot in H. citrina worldwide. Our study will assist in monitoring causal agent diversity of leaf spot and breeding new resistant varieties in H. citrina.

9.
Curr Res Food Sci ; 7: 100559, 2023.
Article in English | MEDLINE | ID: mdl-37600464

ABSTRACT

Bread was prepared using wheat flour with grape seed proanthocyanidin (GSP) (0.4%). GSP improved the textural properties of bread including hardness, cohesiviness, gumminess and chewiness. At the last stage of fermentation, GSP reinforced the gluten microstructure with increased the disulfide bonds and hydrophobic interaction and α-helix in the secondary structures. Moreover, GSP addition could increase the total phenolics and antioxidative acitivity of the bread significantly. In addition, the degree of fermentation had a strong influence on the dough forces, and the reasonable control of bread fermentation time was beneficial to improve the bread quality, which provided a reference for the bread processing industry.

10.
J Exp Bot ; 74(18): 5635-5652, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37368909

ABSTRACT

Extensins are hydroxyproline-rich glycoproteins and generally play a structural role in cell wall integrity. In this study, we determined a novel role of tomato (Solanum lycopersicum) SENESCENCE-ASSOCIATED EXTENSIN1 (SAE1) in leaf senescence. Both gain- and loss-of-function analyses suggest that SAE1 plays a positive role in leaf senescence in tomato. Transgenic plants overexpressing SAE1 (SAE1-OX) exhibited premature leaf senescence and enhanced dark-induced senescence, whereas SAE1 knockout (SAE1-KO) plants displayed delayed development-dependent and dark-induced leaf senescence. Heterologous overexpression of SlSAE1 in Arabidopsis also led to premature leaf senescence and enhanced dark-induced senescence. In addition, the SAE1 protein was found to interact with the tomato ubiquitin ligase SlSINA4, and SlSINA4 promoted SAE1 degradation in a ligase-dependent manner when co-expressed in Nicotiana benthamiana leaves, suggesting that SlSINA4 controls SAE1 protein levels via the ubiquitin-proteasome pathway. Introduction of an SlSINA4-overexpression construct into the SAE1-OX tomato plants consistently completely eliminated accumulation of the SAE1 protein and suppressed the phenotypes conferred by overexpression of SAE1. Taken together, our results suggest that the tomato extensin SAE1 plays a positive role in leaf senescence and is regulated by the ubiquitin ligase SINA4.


Subject(s)
Arabidopsis , Solanum lycopersicum , Ubiquitin/genetics , Solanum lycopersicum/genetics , Ligases/genetics , Plant Senescence , Arabidopsis/genetics , Plant Leaves , Gene Expression Regulation, Plant
11.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902028

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker of kiwifruit with heavy economic losses. However, little is known about the pathogenic genes of Psa. CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas-mediated genome editing technology has dramatically facilitated the characterization of gene function in various organisms. However, CRISPR genome editing could not be efficiently employed in Psa due to lacking homologous recombination repair. The base editor (BE) system, which depends on CRISPR/Cas, directly induces single nucleoside C to T without homology recombination repair. Here, we used dCas9-BE3 and dCas12a-BE3 systems to create substitutions of C to T and to convert CAG/CAA/CGA codons to stop codons (TAG/TAA/TGA) in Psa. The dCas9-BE3 system-induced single C-to-T conversion frequency of 3 to 10 base positions ranged from 0% to 100%, with a mean of 77%. The dCas12a-BE3 system-induced single C-to-T conversion frequency of 8 to 14 base positions in the spacer region ranged from 0% to 100%, with a mean of 76%. In addition, a relatively saturated Psa gene knockout system covering more than 95% of genes was developed based on dCas9-BE3 and dCas12a-BE3, which could knock out two or three genes at the same time in the Psa genome. We also found that hopF2 and hopAO2 were involved in the Psa virulence of kiwifruit. The HopF2 effector can potentially interact with proteins such as RIN, MKK5, and BAK1, while the HopAO2 effector can potentially interact with the EFR protein to reduce the host's immune response. In conclusion, for the first time, we established a PSA.AH.01 gene knockout library that may promote research on elucidating the gene function and pathogenesis of Psa.


Subject(s)
Actinidia , Pseudomonas syringae , Gene Editing , Plant Diseases/microbiology , Gene Knockout Techniques , Actinidia/genetics
12.
Plant Sci ; 331: 111672, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36921631

ABSTRACT

Glucose signaling plays an essential role in plant growth, development and stress response. Previous studies have shown that STOREKEEPER (STK) is a new class of DNA binding protein that regulates patatin expression in potato tubers and confers elevated sensitivity to glucose response in Arabidopsis thaliana. However, the biological functions of STK gene in tomato (Solanum lycopersicum) have not been studied. Here, we characterized the tomato SlSTK and determined its role in glucose signaling. The SlSTK protein was localized in the nucleus and the expression of the SlSTK gene was induced by the glucose treatment. Overexpression of SlSTK in tomato enhanced glucose sensitivity, as manifested by reduced seed germination rate and arrested growth at the early seedling stage. In contrast, the SlSTK-knockout plants generated via the clustered regularly interspaced short palindromic repeats (CRISPR) - CRISPR-associated protein 9 (CRISPR-Cas9) technique attenuated the sensitivity to glucose. In addition, SlSTK was ubiquitinated in plant cells and interacted with the tomato ubiquitin ligase SEVEN IN ABSENTIA4 (SlSINA4) that degrades SlSTK in a ligase-dependent manner. Taken together, these results suggest that SlSTK is involved in glucose signaling and its stability is regulated by the ubiquitin ligase SlSINA4.


Subject(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Ubiquitin/metabolism , Plant Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Seedlings , Arabidopsis/genetics , Gene Expression Regulation, Plant
13.
Int J Endocrinol ; 2022: 9462683, 2022.
Article in English | MEDLINE | ID: mdl-36213199

ABSTRACT

Background: Leptin has an association with male infertility. However, only sporadic studies inconsistently reported the results. Aim and Objective. In this study, we aimed to perform a meta-analysis to investigate the relationship between leptin and male infertility. Methods: This study was performed based on published articles related to leptin and infertile males. PubMed, Web of Science, Google Scholar, Ovid + Cochrane Central Register of Controlled Trials, Wiley Online Library, Chinese CNKI, Chinese Chong Qing VIP, Chinese Wan Fang, and China Biology Medicine databases were searched to identify all relevant studies. All eligible works of literature were analyzed by the "meta" or "metan" command in STATA version 12.0 software. The standardized mean difference (SMD) of leptin concentration in serum or semen and 95% confidence intervals (CIs) were estimated for all studies. The heterogeneity was described with I2. The sources of heterogeneity were explored via metaregression, and stratified analyses, sensitivity analyses, and publication bias were performed. Results: Nineteen studies were included in the current meta-analysis, involving 1138 cases of infertile men and 756 controls. The SMD of leptin concentration in serum was 2.002 (95% CI: 1.086, 2.918), Z-test (z) z = 4.29; p < 0.001, and I2 was 97.3%, p < 0.001. The SMD of leptin concentration in semen was 3.274 (95% CI: 2.137, 4.411), z = 5.64; p < 0.001, and I2 was 98.2%, p < 0.001. Notably, serum follicle-stimulating hormone (FSH) was slightly higher in infertile men (SMD = 3.695, z = 2.33, p = 0.020, I2 = 98.8%, p < 0.001). Other hormones, such as luteinizing hormone (LH) and testosterone, were also slightly higher, but the results were not statistically significant. In addition, sperm count (SMD = -4.533, 95% CI: -6.565, -2.501) and sperm motility (SMD = -7.894, 95% CI: -10.616, -5.172) inversely correlated with leptin levels in infertile males. Sperm abnormal forms did not show a statistically significant SMD of -0.076 (95% CI: -3.410, 3.258). Conclusion: Leptin plays a potential role in association with male infertility. This study may effectively reveal the relationship between leptin together with other hormones and its association with male infertility. These results may also provide opinions on precautionary measures.

14.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36077140

ABSTRACT

Kiwifruit bacterial canker is a recent epidemic disease caused by Pseudomonas syringae pv. actinidiae (Psa), which has undergone worldwide expansion in a short time and resulted in significant economic losses. 'Hongyang' (Actinidia chinensis), a widely grown cultivar because of its health-beneficial nutrients and appreciated red-centered inner pericarp, is highly sensitive to Psa. In this work, ten Psa strains were isolated from 'Hongyang' and sequenced for genome analysis. The results indicated divergences in pathogenicity and pathogenic-related genes among the Psa strains. Significantly, the interruption at the 596 bp of HrpR in two low-pathogenicity strains reemphasized this gene, expressing a transcriptional regulator for the effector secretion system, as an important pathogenicity-associated locus of Psa. The transcriptome analysis of 'Hongyang' infected with different Psa strains was performed by RNA-seq of stem tissues locally (at the inoculation site) and systemically. Psa infection re-programmed the host genes expression, and the susceptibility to Psa might be attributed to the down-regulation of several genes involved in plant-pathogen interactions, especially calcium signaling transduction, as well as fatty acid elongation. This suppression was found in both low- and high-pathogenicity Psa inoculated tissues, but the effect was stronger with more virulent strains. Taken together, the divergences of P. syringae pv. actinidiae in pathogenicity, genome, and resulting transcriptomic response of A. chinensis provide insights into unraveling the molecular mechanism of Psa-kiwifruit interactions and resistance improvement in the kiwifruit crop.


Subject(s)
Actinidia , Pseudomonas syringae , Actinidia/metabolism , Genomics , Plant Diseases/genetics , Plant Diseases/microbiology , Virulence/genetics
15.
Plant Cell Environ ; 45(12): 3537-3550, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36128662

ABSTRACT

The tomato transcription factor SlNAC1 plays an important role in abiotic stress response and is fine-tuned at both transcriptional and posttranslational levels. The SlNAC1 gene is strongly induced by multiple abiotic stresses and the SlNAC1 protein is subjected to ubiquitin proteasome-mediated degradation. We found here that SlNAC1 possesses two distinct transactivation domains (TADs), TAD1 and TAD2. Significantly, the instability of SlNAC1 was attributed to the acidic amino acid-rich TAD1, in which the instability and transcriptional potential of TAD1 functionally overlapped; whereas the glutamine-rich TAD2 was stable and accounted for the abiotic stress signalling mediated by SlNAC1. Towards the goal of enhanced tolerance to abiotic stress in tomatoes, we manipulated SlNAC1 at both gene and protein levels: we generated a stable and functional SlNAC1 mutant SlNAC1∆191-270 by removing TAD1 and further engineered it to be stress-controllable by fusing the corresponding cDNA with the abiotic stress-inducible promoter ProStNAC1 . Transgenic tomato plants expressing the ProStNAC1 ::SlNAC1∆191-270 transgene did not display any undesired traits and exhibited enhanced tolerance to cold, drought and salt stresses. Taken together, our manipulation of the stress-related transcription factor via conditional expression of its derived stable and functional mutant provides a successful example for developing crops dynamically adapted to abiotic stress.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Droughts , Plants, Genetically Modified/metabolism
16.
Food Chem ; 390: 133154, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35584576

ABSTRACT

We evaluated the in vitro digestibility of apple polyphenols mimicking elderly and adult digestion models (dynamic and static systems). The digestibility of total apple polyphenols in small intestine was much higher in the adult dynamic system (62 µg/100 g fresh apple) compared to the static system (20 µg/100 g fresh apple) and elderly dynamic digestion conditions (33 µg/100 g fresh apple). Elderly in vitro static digestion showed better antioxidant activity than the adult system (OH and ABTS+ methods). Thus, the in vitro dynamic digestion system can more truly reflect the digestion of apple polyphenols than static digestion system. Moreover, elderly digestion conditions negatively influenced the digestibility of apple polyphenols including chlorogenic acid, epicatechin, phlorizin, rutin, phloretin, hyperoside, proanthocyanidin B2, and quercetin. Hence, appropriate selection of in vitro digestion models for elderly is a prerequisite to exploring the digestibility of phytochemicals for the development of functional food products for elderly.


Subject(s)
Catechin , Malus , Adult , Aged , Antioxidants , Chlorogenic Acid , Digestion , Humans , Polyphenols
17.
Food Chem Toxicol ; 147: 111875, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227389

ABSTRACT

Huangshan Gongju was extracted with organic solvents (ethanol, methanol and acetone) of different concentrations (0-90%), and the extracts' phenolic content and antioxidant activity, as well as the correlations between them were examined. With the increasing concentration of organic solvent, the total phenolic compound (TPC) increased continuously and met its maximum at 70% acetone, whereas the total flavonoid compound (TFC) and most individual phenolics met their maximums at 70% ethanol. Similar changes occurred to the antioxidant activity, including DPPH and ABTS scavenging activities, and their maximums were respectively found at 50% acetone and 70% ethanol. The antioxidant activity correlated strongly with TPC/TFC (r > 0.954, p < 0.01) and individual phenolics (r > 0.886, p < 0.05), and the strongest correlations between them were mainly given by luteolin-7-O-glucoside (r > 0.975, p < 0.001). These results suggested that high content organic solvent (50-70%) was beneficial to obtain Huangshan Gongju extracts of higher phenolic content and antioxidant activity, and 70% ethanol may be the promising solvent. Besides, phenolics were found to be the main antioxidants of Huangshan Gongju extracts, and flavonoids especially luteolin-7-O-glucoside may play more important roles in the antioxidant activity.


Subject(s)
Antioxidants/pharmacology , Asteraceae/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/chemistry , Solvents/chemistry
18.
Plant Sci ; 302: 110702, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33288015

ABSTRACT

Pseudomonas syringae pv. tomato (Pst) is a pathogenic microorganism that causes bacterial speck disease and affects tomato yield and quality. Pto is a disease resistant gene for plant to recognize and defense against Pst. Pto interacts with Pti (Pto interacting) proteins, which include three transcription factors, Pti4, Pti5, Pti6, and they were thought to be downstream of Pto-mediated pathway to promote the expression of disease-related genes. In the present work, the overexpression plants of Pti4, Pti5 or Pti6 were obtained by Agrobacterium-mediated transformation in tomato. The Pti4/5/6-overexpressed lines indicated enhanced expression of pathogenesis-related genes and resistance to pathogenic bacteria Pst DC3000. Meanwhile, the transgenic plants showed that Pti4/5/6 function in ripening but performed no obvious adverse influence on flowering time, seed-setting rate, weight and soluble solids content of fruits. Furthermore, Pti-overexpressed fruits exhibited increased enzymatic activities of phenylalnine ammonialyase, catalase, peroxidase and decreased content of malondialdehyde. Additionally, cell-free and in vivo ubiquitination assay indicated that Pti4, Pti5 and Pti6 degraded by 26S proteasome which suggested that these Pti transcription regulators' functions could be regulated by ubiquitin-mediated post translational regulation in tomato.


Subject(s)
Disease Resistance , Fruit/growth & development , Plant Diseases/immunology , Plant Proteins/physiology , Pseudomonas syringae , Solanum lycopersicum/physiology , Transcription Factors/physiology , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/metabolism , Ubiquitination
19.
J Exp Bot ; 71(22): 6945-6957, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32845982

ABSTRACT

BSD (mammalian BTF2-like transcription factors, synapse-associated proteins, and DOS2-like proteins) is a conserved domain that exists in a variety of organisms, but its function has not been well studied. Here, we identified a novel BSD domain-containing protein (SlBSD1) in tomato (Solanum lycopersicum). Biochemical and microscopy assays indicated that SlBSD1 is a functional transcription factor that is predominantly localized in the nucleus. Loss-of-function and overexpression analyses suggested that SlBSD1 is a novel regulator of vegetative growth and leaf senescence in tomato. SlBSD1-knockdown (-KD) plants exhibited retarded vegetative growth and precocious leaf senescence, whereas SlBSD1-overexpression (-OX) plants displayed the opposite phenotypes. The negative role of SlBSD1 in leaf senescence was also supported by RNA-seq analysis comparing leaf tissues from SlBSD1-KD and wild-type plants. In addition, contents of soluble solids were altered in fruits in the SlBSD1-KD and SlBSD1-OX plants. Taken together, our data suggest that the novel transcription factor SlBSD1 plays important roles in controlling fruit quality and other physiological processes in tomato, including vegetative growth and leaf senescence.


Subject(s)
Solanum lycopersicum , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Mol Cytogenet ; 13: 27, 2020.
Article in English | MEDLINE | ID: mdl-32636925

ABSTRACT

BACKGROUND: High proportion of human embryos produced by in vitro fertilization (IVF) is aneuploidy. Many factors are related to the prevalence of embryonic aneuploidies, such as maternal age, sperm quality, and in vitro manipulation of oocytes. Oocytes are usually inseminated by intracytoplasmic sperm injection (ICSI) procedures for preimplantation genetic testing. There is still no available information whether insemination procedures, regular IVF or ICSI, affect embryonic aneuploidies. METHODS: In this case report, a patient at her age of 47 years old received donated oocytes from a young donor for infertility treatment. Half of oocytes were inseminated by regular IVF and other half of oocytes were inseminated by ICSI. Fertilized oocytes were cultured to blastocyst stage and then biopsied for preimplantation genetic testing for aneuploidies (PGT-A). The proportions of aneuploidies were compared between two insemination procedures. RESULTS: Forty-seven oocytes were retrieved, 23 were inseminated by regular IVF and 24 were removed from enclosed cumulus cells for ICSI. Out of 24 oocytes, 21 oocytes at metaphase II were inseminated by ICSI. After fertilization assessment, it was found that 12 oocytes from regular IVF fertilized normally. Nine blastocysts (75%) were biopsied and 1 (11.1%) was aneuploidy. By contrast, 19 out of 21 oocytes inseminated by ICSI fertilized normally, 14 blastocysts (73.7%) were obtained and 7 (50.0%) were aneuploidy. Transfer of a euploid blastocyst from regular IVF resulted in a healthy baby delivery. CONCLUSION: These results indicate that more embryos produced by ICSI are aneuploidy as compared with embryos produced by regular IVF. The results indicate that in vitro manipulation of oocytes for ICSI procedure may have adverse effect on human oocytes, and it may be one of the reasons causing aneuploid embryos in human IVF.

SELECTION OF CITATIONS
SEARCH DETAIL