Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 652(Pt A): 989-996, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37639929

ABSTRACT

The design and development of high-performance, low-cost catalysts with long-term durability are crucial for hydrogen generation from water electrolysis. Interfacial engineering is an appealing strategy to boost the catalytic performance of electrode materials toward hydrogen evolution reaction (HER). Herein, we report a simple phosphidation followed by sulfidation treatment to construct heterogeneous cobalt phosphide-cobalt sulfide nanowire arrays on carbon cloth (CoP/CoS2/CC). When evaluated as catalysts toward the HER, the resultant CoP/CoS2/CC exhibits efficient pH-universal hydrogen production due to the heterostructure, synergistic contribution of CoP and CoS2, and conductive substrate. To attain a current density of 10 mA cm-2, overpotentials of only 111.2, 58.1, and 182.9 mV for CoP/CoS2/CC are required under alkaline, acidic, and neutral conditions, respectively. In particular, the as-prepared CoP/CoS2/CC shows markedly improved HER electroactivity in 1.0 M KOH, even outperforming commercial Pt-C/CC at a current density of >50 mA cm-2. In addition, the self-assembled CoP/CoS2||NiFe layered double hydroxide electrolyzer demonstrates efficient catalytic performance and long-time stability, excelling the benchmark Pt-C||IrO2. These findings indicate an effective pathway for the fabrication of high-performance heterogeneous electrocatalysts for hydrogen production in the future.

2.
Molecules ; 28(13)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37446553

ABSTRACT

In this work, the influence of different phosphorus sources and the modification of zinc and phosphorus on the performance of the conversion of methanol to aromatics (MTA) was investigated. The results showed that the phosphorus source had a significant impact on the selectivity of para-xylene (PX) in xylene and catalyst stability. The introduction of P resulted in the covering of the active acid sites and the narrowing of the pore of the ZSM-5 zeolite, which improved the shape-selectivity for PX in the methanol conversion reaction. Compared with the modifiers of H3PO4 and (NH4)3PO4, the ZSM-5 zeolite modified by (NH4)2HPO4 exhibited better catalyst stability and PX-selectivity due to its larger specific surface area, pore volume and suitable acidity. When the ZSM-5 zeolite was modified by Zn and P, the effect of Zn and P on the selectivity to aromatics and PX in xylene was almost opposite. With the increase in P-loading, the selectivity of PX in xylene gradually increased but at the cost of decreasing the aromatic-selectivity. On the other hand, the loading of Zn introduced Zn-Lewis acid sites to provide aromatization active centers and improved the aromatic-selectivity. However, excessive Zn reduced the selectivity of PX in xylene. The catalyst activity and aromatic-selectivity could be improved to some extent with an appropriate ratio of Zn and P, while maintaining or increasing the para-selectivity of xylene. Compared with 5% P/ZSM-5 catalyst modified with only (NH4)2HPO4, the PX selectivity in xylene over the Zn-P/ZSM-5 catalyst modified with 5% Zn and 1% P improved from 86.6% to 90.1%, and the PX yield increased by 59%.


Subject(s)
Xylenes , Zeolites , Zinc , Methanol , Phosphorus
3.
Micromachines (Basel) ; 13(11)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36363833

ABSTRACT

In this work, with the the H2TiO3 colloidal suspension and MoS2 as the precursors, TiO2/MoS2 composites composed of anatase TiO2 nanocrystals with co-exposed {101} and [111]-facets (nanorod and nanocuboid), {101} and {010} facets (nanospindle), and MoS2 microspheres constructed by layer-by-layer self-assembly of nanosheets were hydrothermally synthesized under different pH conditions. The characterization has been performed by combining X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra, and UV-visible absorption spectrum analyses. The photocatalytic degradation of rhodamine B (RhB) in an aqueous suspension was employed to evaluate the photocatalytic activity of the as-prepared pHx-TiO2/MoS2 composites. The photocatalytic degradation efficiency of pH3.5-TiO2/MoS2 composite was the highest (99.70%), which was 11.24, 2.98, 1.48, 1.21, 1.09, 1.03, 1.10, and 1.14 times that of Blank, MoS2, CM-TiO2, pH1.5-TiO2/MoS2, pH5.5-TiO2/MoS2, pH7.5-TiO2/MoS2, pH9.5-TiO2/MoS2, pH11.5-TiO2/MoS2, respectively. The pH3.5-TiO2/MoS2 composite exhibited the highest photocatalytic degradation rate, which may be attributed to the synergistic effects of its large specific surface area, suitable heterojunction structure, and favorable photogenerated charge-separation efficiency. This work is expect to provide primary insights into the photocatalytic effect of TiO2/MoS2 composite with co-exposed high-energy facets, and make a contribution to designing more efficient and stable photocatalysts.

4.
Nanomaterials (Basel) ; 12(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36014744

ABSTRACT

In this paper, rod-shaped, cuboid-shaped, and irregular WO3 nanocrystals with different co-exposed crystal facets were prepared for the first time by a simple hydrothermal treatment of tungstic acid colloidal suspension with desired pH values. The crystal structure, morphology, specific surface area, pore size distribution, chemical composition, electronic states of the elements, optical properties, and charge migration behavior of as-obtained WO3 products were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), fully automatic specific surface area and porosity analyzer, UV-vis absorption spectra, photoluminescence (PL) spectra, and electrochemical impedance spectroscopy (EIS). The photocatalytic performances of the synthesized pHx-WO3 nanocrystals (x = 0.0, 1.5, 3.0, 5.0, and 7.0) were evaluated and compared with the commercial WO3 (CM-WO3) nanocrystals. The pH7.0-WO3 nanocrystals with co-exposed {202} and {020} facets exhibited highest photocatalytic activity for the degradation of methylene blue solution, which can be attributed to the synergistic effects of the largest specific surface area, the weakest luminescence peak intensity and the smallest arc radius diameter.

5.
R Soc Open Sci ; 9(3): 211284, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35345428

ABSTRACT

ZSM-5 zeolites were hydrothermally synthesized with commercial silica sol, and the crystal size was controlled by adding silicalite-1 seed in the synthetic system. The crystal size of ZSM-5 was affected by the crystallization time of seed, seed content and seed size. ZSM-5 zeolites with controllable particle size in the range of 200-2200 nm could be obtained. The prepared samples with different particle sizes were used for the reaction of methanol conversion to aromatics (MTA). The results suggested that the HZSM-5 catalyst with small crystal size showed much longer catalyst lifetime and higher selectivity for C5 + hydrocarbons and aromatics, especially C9 + aromatics in the MTA reaction. Moreover, the introduction of zinc (Zn) into the HZSM-5 zeolites can considerably promote the selectivity to aromatics in the products. Zn modified HZSM-5 zeolites with different Zn loading amounts were prepared by the incipient wetness impregnation method, and the highest aromatics selectivity was obtained when the Zn loading was 1.0%. The improvement of methanol aromatization was ascribed to the synergistic effect of Brønsted acid sites and the newly formed Zn-Lewis acid sites.

6.
Molecules ; 26(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34641575

ABSTRACT

In this work, TiO2/CdS nanocomposites with co-exposed {101}/[111]-facets (NH4F-TiO2/CdS), {101}/{010} facets (FMA-TiO2/CdS), and {101}/{010}/[111]-facets (HF-TiO2/CdS and Urea-TiO2/CdS) were successfully synthesized through a one-pot solvothermal method by using [Ti4O9]2- colloidal solution containing CdS crystals as the precursor. The crystal structure, morphology, specific surface area, pore size distribution, separation, and recombination of photogenerated electrons/holes of the TiO2/CdS nanocomposites were characterized. The photocatalytic activity and cycling performance of the TiO2/CdS nanocomposites were also investigated. The results showed that as-prepared FMA-TiO2/CdS with co-exposed {101}/{010} facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of methyl orange (MO), and its degradation efficiency was 88.4%. The rate constants of FMA-TiO2/CdS was 0.0167 min-1, which was 55.7, 4.0, 3.7, 3.5, 3.3, and 1.9 times of No catalyst, CdS, HF-TiO2/CdS, NH4F-TiO2/CdS, CM-TiO2, Urea-TiO2/CdS, respectively. The highest photocatalytic activity of FMA-TiO2/CdS could be attributed to the synergistic effects of the largest surface energy, co-exposed {101}/{010} facets, the lowest photoluminescence intensity, lower charge-transfer resistance, and a higher charge-transfer efficiency.

7.
ACS Omega ; 5(23): 14147-14156, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32566882

ABSTRACT

In this study, hollow square rodlike microtubes composed of anatase nanocuboids with coexposed {100}, {010}, and {001} facets were successfully synthesized via a mild hydrothermal treatment method in the presence of NH4F by using layered H2Ti3O7 ribbons as the precursor. The precursor H2Ti3O7 ribbons were prepared from H+/Na+ ion-exchanged Na2Ti3O7. The suspension solution of protonated H2Ti3O7 ribbons was adjusted to desired pH values (0.5-13.0) prior to hydrothermal treatment. The elongated direction of the microtubes is along the b axis, according to the profile of the H2Ti3O7 ribbons. The transformation from staggered [Ti3O7]2- sheets to hollow square rodlike microtubes contained the formation and recombination of the dispersed octahedral [Ti(OH)2(OH2)4]2+ monomers, the formation and growth of the initial anatase nuclei, and the reassembly of the anatase nanocuboids along the b-axis direction during the continuous hydrothermal process. The degradation rate of pH 0.5-TiO2 was the highest at 1.66 × 10-2 min-1, which was 1.3, 1.5, 2.0, 2.3, and 18.4 folds higher than that of pH 3.0-TiO2 (1.27 × 10-2 min-1), pH 7.0-TiO2 (1.11 × 10-2 min-1), pH 5.0-TiO2 (0.83 × 10-2 min-1), P25-TiO2 (0.73 × 10-2 min-1), and the blank sample (0.09 × 10-2 min-1), respectively. Compared with P25-TiO2 and the other anatase TiO2 samples, pH 0.5-TiO2 exhibited the best photocatalytic activity, which was mainly attributed to its larger proportion of {010} (or {100}) facets, smaller crystalline size, higher band gap, and larger specific surface area.

8.
Materials (Basel) ; 12(21)2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31689889

ABSTRACT

A facile one-pot microwave-assisted hydrothermal synthesis of rutile TiO2 quadrangular prisms with dominant {110} facets, anatase TiO2 nanorods and square nanoprisms with co-exposed {101}/[111] facets, anatase TiO2 nanorhombuses with co-exposed {101}/{010} facets, and anatase TiO2 nanospindles with dominant {010} facets were reported through the use of exfoliated porous metatitanic acid nanosheets as a precursor. The nanostructures and the formation reaction mechanism of the obtained rutile and anatase TiO2 nanocrystals from the delaminated nanosheets were investigated. The transformation from the exfoliated metatitanic nanosheets with distorted hexagonal cavities to TiO2 nanocrystals involved a dissolution reaction of the nanosheets, nucleation of the primary [TiO6]8- monomers, and the growth of rutile-type and anatase-type TiO2 nuclei during the microwave-assisted hydrothermal reaction. In addition, the photocatalytic activities of the as-prepared anatase nanocrystals were evaluated through the photocatalytic degradation of typical carcinogenic and mutagenic methyl orange (MO) under UV-light irradiation at a normal temperature and pressure. Furthermore, the dye-sensitized solar cell (DSSC) performance of the synthesized anatase TiO2 nanocrystals with various morphologies and crystal facets was also characterized. The {101}/[111]-faceted pH2.5-T175 nanocrystal showed the highest photocatalytic and photovoltaic performance compared to the other TiO2 samples, which could be attributed mainly to its minimum particle size and maximum specific surface area.

9.
Ecotoxicol Environ Saf ; 182: 109381, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31260917

ABSTRACT

To assess the human cancer risk exposed to soil contaminated by polycyclic aromatic hydrocarbons (PAHs) in Shanxi province, China, the total 33 samples in the surface soil were collected from 11 cities, and the priority 15 PAHs were analyzed using gas chromatography-mass spectrometry after the soxhlet extraction and silica-alumina column purification. As a result, the levels of ∑15PAH in soil varied from 66.2 to 2633 ng/g dry weight (dw) with a mean of 732 ng/g dw, and seven carcinogenic PAHs made up 42-69% of the total priority PAHs and had an average value of 367 (in the range of 33.2 to 1181) ng/g dw. Accordingly, the total concentrations of benzo[a]pyrene equivalents (BaPeq) for 15 PAHs ranged from 10.3 to 358 (average 98.3) ng/g dw, and the seven carcinogenic BaPeq accounted for above 90%. Subsequently, the possible sources of PAHs in soil were identified by isomer ratios, demonstrating that the combustion contributed to the main source. Finally, the incremental lifetime cancer risks (ILCR) of soil contaminated by 15 priority PAHs were estimated using the targeted chemical-specific approach. ILCR values were considered to be greater than 1 × 10-6 in 16 of 33 sites and followed a decreasing trend of adulthood > childhood > adolescence. Subsequently, the analysis of variance was performed by average ILCR value among the 11 cities (n = 3, p < 0.01), which indicated that the potential low cancer risk significantly increased for nearby residents in two areas, including Datong and Xinzhou, with the ILCR values of 4.61 ±â€¯1.93 and 3.92 ±â€¯2.54 per million, respectively. Therefore, the consumption of traditional coal should be controlled and partially replaced with the alternative energy sources. And the rigorous monitoring should be termly warranted to avoid the cancer risk for human being in agricultural area of Shanxi, China.


Subject(s)
Environmental Monitoring/methods , Neoplasms/epidemiology , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Soil/chemistry , Adolescent , Adult , Agriculture , Child , China , Cities , Humans , Risk Assessment
10.
RSC Adv ; 9(51): 29959-29966, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-35531530

ABSTRACT

In this work, NiFe2O4 nanoparticles were successfully supported on cotton-based carbon fibers through a flexible two-step approach consisting of calcination of cotton in a N2 atmosphere and subsequent hydrothermal reaction. The incorporation of the NiFe2O4 nanoparticles into cotton-based carbon fibers resulted in better impedance matching, leading to better microwave absorption performance than cotton-based carbon fibers and NiFe2O4 nanoparticles. For NiFe2O4/carbon fibers, reflection loss (RL) values less than -10 dB were obtained in the frequency range of 11.5-18 GHz with 2.4 mm thickness, which covered the entire Ku-band (from 12 to 18 GHz). Meanwhile, when the matching thickness was 3.2 mm, the RL values less than -10 dB were in the range of 8.0-12.7 GHz, which covered the entire X-band (from 8 to 12 GHz). This excellent and interesting microwave absorption performance can satisfy multiple applications. Owing to the characteristics of a cost-effective synthetic route, low density and excellent microwave absorption, the NiFe2O4/carbon fibers have a promising future in X-band and Ku-band absorption.

SELECTION OF CITATIONS
SEARCH DETAIL
...