Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Virol ; 96(12): e0041222, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35652658

ABSTRACT

SARS-CoV-2 is the causative agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19) and poses a significant threat to global health. N protein (NP), which is a major pathogenic protein among betacoronaviruses, binds to the viral RNA genome to allow viral genome packaging and viral particle release. Recent studies showed that NP antagonizes interferon (IFN) induction and mediates phase separation. Using live SARS-CoV-2 viruses, this study provides solid evidence showing that SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming G3BP1-mediated antiviral innate immunity. G3BP1 conditional knockout mice (g3bp1fl/fL, Sftpc-Cre) exhibit significantly higher lung viral loads after SARS-CoV-2 infection than wild-type mice. Our findings contribute to the growing body of knowledge regarding the pathogenicity of NPSARS-CoV-2 and provide insight into new therapeutics targeting NPSARS-CoV-2. IMPORTANCE In this study, by in vitro assay and live SARS-CoV-2 virus infection, we provide solid evidence that the SARS-CoV-2 NP associates with G3BP1 and G3BP2 in vitro and in vivo. NPSARS-CoV-2 could efficiently suppress G3BP-mediated SG formation and potentiate viral infection by overcoming antiviral innate immunity mediated by G3BP1 in A549 cell lines and G3BP1 conditional knockout mice (g3bp1-cKO) mice, which provide in-depth evidence showing the mechanism underlying NP-related SARS-CoV-2 pathogenesis through G3BPs.


Subject(s)
COVID-19 , Coronavirus Nucleocapsid Proteins , Poly-ADP-Ribose Binding Proteins , SARS-CoV-2 , Virus Replication , Adaptor Proteins, Signal Transducing/metabolism , Animals , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/metabolism , DNA Helicases/metabolism , Host Microbial Interactions/immunology , Mice , Phosphoproteins/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , RNA Helicases/metabolism , RNA Recognition Motif Proteins/metabolism , RNA-Binding Proteins/metabolism , Stress Granules , Virus Replication/genetics
2.
Cell Death Dis ; 13(4): 298, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379774

ABSTRACT

The anti-apoptotic protein HAX-1 has been proposed to modulate mitochondrial membrane potential, calcium signaling and actin remodeling. HAX-1 mutation or deficiency results in severe congenital neutropenia (SCN), loss of lymphocytes and neurological impairments by largely unknown mechanisms. Here, we demonstrate that the activation of c-Abl kinase in response to oxidative or genotoxic stress is dependent on HAX-1 association. Cellular reactive oxygen species (ROS) accumulation is inhibited by HAX-1-dependent c-Abl activation, which greatly contributes to the antiapoptotic role of HAX-1 in stress. HAX-1 (Q190X), a loss-of-function mutant responsible for SCN, fails to bind with and activate c-Abl, leading to dysregulated cellular ROS levels, damaged mitochondrial membrane potential and eventually apoptosis. The extensive apoptosis of lymphocytes and neurons in Hax-1-deficient mice could also be remarkably suppressed by c-Abl activation. These findings underline the important roles of ROS clearance in HAX-1-mediated anti-apoptosis by c-Abl kinase activation, providing new insight into the pathology and treatment of HAX-1-related hereditary disease or tumorigenesis.


Subject(s)
Apoptosis Regulatory Proteins , Apoptosis , Animals , Apoptosis/physiology , Congenital Bone Marrow Failure Syndromes , Mice , Neutropenia/congenital , Reactive Oxygen Species
3.
J Biol Chem ; 298(4): 101778, 2022 04.
Article in English | MEDLINE | ID: mdl-35231444

ABSTRACT

Cytoskeletal microtubules (MTs) are nucleated from γ-tubulin ring complexes (γTuRCs) located at MT organizing centers (MTOCs), such as the centrosome. However, the exact regulatory mechanism of γTuRC assembly is not fully understood. Here, we showed that the nonreceptor tyrosine kinase c-Abl was associated with and phosphorylated γ-tubulin, the essential component of the γTuRC, mainly on the Y443 residue by in vivo (immunofluorescence and immunoprecipitation) or in vitro (surface plasmon resonance) detection. We further demonstrated that phosphorylation deficiency significantly impaired γTuRC assembly, centrosome construction, and MT nucleation. c-Abl/Arg deletion and γ-tubulin Y443F mutation resulted in an abnormal morphology and compromised spindle function during mitosis, eventually causing uneven chromosome segregation. Our findings reveal that γTuRC assembly and nucleation function are regulated by Abl kinase-mediated γ-tubulin phosphorylation, revealing a fundamental mechanism that contributes to the maintenance of MT function.


Subject(s)
Microtubule-Organizing Center , Microtubules , Proto-Oncogene Proteins c-abl , Tubulin , Centrosome/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Phosphorylation , Proto-Oncogene Proteins c-abl/genetics , Proto-Oncogene Proteins c-abl/metabolism , Tubulin/genetics , Tubulin/metabolism
4.
FEBS Open Bio ; 11(6): 1731-1738, 2021 06.
Article in English | MEDLINE | ID: mdl-33932144

ABSTRACT

Nonreceptor tyrosine kinase c-Abl participates in several cellular processes by phosphorylating transcription factors or cofactors. c-Abl binds and phosphorylates four-and-a-half-LIM-only protein 2 (FHL2), but the identity of the phosphorylation sites and their contribution to cell cycle regulation is unclear. In this study, we demonstrate that c-Abl highly phosphorylates FHL2 at Y97, Y176, Y217, and Y236 through mass spectrometry and tyrosine-to-phenylalanine (Y â†’ F) mutant analysis. Proliferation was inhibited in cells expressing wild-type (WT) FHL2 but not cells expressing the phosphorylation-defective mutant FHL2(4YF). Moreover, FHL2 contributed to cell cycle arrest at G2/M induced by ionizing radiation (IR). FHL2 WT but not FHL2(4YF) rescued FHL2 function in FHL2-depleted cells by causing IR-induced G2/M arrest. These results demonstrate that c-Abl regulates cell cycle progression by phosphorylating FHL2.


Subject(s)
LIM-Homeodomain Proteins/metabolism , Muscle Proteins/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Transcription Factors/metabolism , Cell Proliferation , Cells, Cultured , G2 Phase Cell Cycle Checkpoints , Humans , LIM-Homeodomain Proteins/deficiency , Muscle Proteins/deficiency , Phosphorylation , Radiation, Ionizing , Transcription Factors/deficiency
5.
iScience ; 24(2): 102078, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33644712

ABSTRACT

Interferon (IFN)-induced activation of the signal transducer and activator of transcription (STAT) family is an important event in antiviral immunity. Here, we show that the nonreceptor kinases c-Abl and Arg directly interact with STAT1 and potentiate the phosphorylation of STAT1 on Y701. c-Abl/Arg could mediate STAT1 phosphorylation independent of Janus kinases in the absence of IFNγ and potentiate IFNγ-mediated STAT1 phosphorylation. Moreover, STAT1 dimerization, nuclear translocation, and downstream gene transcription are regulated by c-Abl/Arg. c-Abl/Arg (abl1/abl2) deficiency significantly suppresses antiviral responses in vesicular stomatitis virus-infected cells. Compared to vehicle, administration of the c-Abl/Arg selective inhibitor AMN107 resulted in significantly increased mortality in mice infected with human influenza virus. Our study demonstrates that c-Abl plays an essential role in the STAT1 activation signaling pathway and provides an important approach for antiviral immunity regulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...