Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 14(4): e1650, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38649772

ABSTRACT

BACKGROUND: Although many molecules have been investigated as biomarkers for spinal cord injury (SCI) or ischemic stroke, none of them are specifically induced in central nervous system (CNS) neurons following injuries with low baseline expression. However, neuronal injury constitutes a major pathology associated with SCI or stroke and strongly correlates with neurological outcomes. Biomarkers characterized by low baseline expression and specific induction in neurons post-injury are likely to better correlate with injury severity and recovery, demonstrating higher sensitivity and specificity for CNS injuries compared to non-neuronal markers or pan-neuronal markers with constitutive expressions. METHODS: In animal studies, young adult wildtype and global Atf3 knockout mice underwent unilateral cervical 5 (C5) SCI or permanent distal middle cerebral artery occlusion (pMCAO). Gene expression was assessed using RNA-sequencing and qRT-PCR, while protein expression was detected through immunostaining. Serum ATF3 levels in animal models and clinical human samples were measured using commercially available enzyme-linked immune-sorbent assay (ELISA) kits. RESULTS: Activating transcription factor 3 (ATF3), a molecular marker for injured dorsal root ganglion sensory neurons in the peripheral nervous system, was not expressed in spinal cord or cortex of naïve mice but was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Additionally, ATF3 protein levels in mouse blood significantly increased 1 day after SCI or ischemic stroke. Importantly, ATF3 protein levels in human serum were elevated in clinical patients within 24 hours after SCI or ischemic stroke. Moreover, Atf3 knockout mice, compared to the wildtype mice, exhibited worse neurological outcomes and larger damage regions after SCI or ischemic stroke, indicating that ATF3 has a neuroprotective function. CONCLUSIONS: ATF3 is an easily measurable, neuron-specific biomarker for clinical SCI and ischemic stroke, with neuroprotective properties. HIGHLIGHTS: ATF3 was induced specifically in neurons of the spinal cord or cortex within 1 day after SCI or ischemic stroke, respectively. Serum ATF3 protein levels are elevated in clinical patients within 24 hours after SCI or ischemic stroke. ATF3 exhibits neuroprotective properties, as evidenced by the worse neurological outcomes and larger damage regions observed in Atf3 knockout mice compared to wildtype mice following SCI or ischemic stroke.


Subject(s)
Activating Transcription Factor 3 , Biomarkers , Ischemic Stroke , Neurons , Spinal Cord Injuries , Animals , Female , Humans , Male , Mice , Activating Transcription Factor 3/metabolism , Activating Transcription Factor 3/genetics , Biomarkers/metabolism , Biomarkers/blood , Disease Models, Animal , Ischemic Stroke/metabolism , Ischemic Stroke/genetics , Ischemic Stroke/blood , Mice, Knockout , Neurons/metabolism , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/genetics , Spinal Cord Injuries/complications
2.
Exp Neurol ; 365: 114385, 2023 07.
Article in English | MEDLINE | ID: mdl-36931617

ABSTRACT

Postoperative cognitive dysfunction (POCD) is a common postoperative central nervous system (CNS) complication with a higher occurrence among aged individuals than among young individuals. The aim of this study was to explore the mechanisms by which POCD preferentially affects older individuals. We found here that exploratory laparotomy induced cognitive function decline in aged mice but not in young mice and that this decline was accompanied by inflammatory activation of microglia in the hippocampus. Furthermore, microglial depletion by feeding of a standard diet containing a colony stimulating factor 1 receptor (CSF1R) inhibitor (PLX5622) markedly protected aged mice from POCD. Notably, the expression of myocyte-specific enhancer 2C (Mef2C), an immune checkpoint that limits overactivation of microglia, was downregulated in aged microglia. Knocking down Mef2C induced a microglial priming phenotype in young mice, resulting in postoperative increases in the hippocampal levels of the inflammatory factors IL1-ß, IL-6 and TNF-α that could impair cognition; these findings were consistent with the observations in aged mice. In vitro, BV2 cells lacking Mef2C released higher levels of inflammatory cytokines upon stimulation with lipopolysaccharide (LPS, a bacterial toxin) than Mef2C-sufficient cells. Moreover, upregulation of Mef2C in aged mice restrained postoperative microglial activation, attenuating the neuroinflammatory response and cognitive impairment. These results reveal that during aging, loss of Mef2C leads to microglial priming, amplifying postsurgical neuroinflammation and contributing to the vulnerability of elderly patients to POCD. Thus, targeting the immune checkpoint Mef2C in microglia may be a potential strategy for the prevention and treatment of POCD in aged individuals.


Subject(s)
MEF2 Transcription Factors , Postoperative Cognitive Complications , Animals , Mice , Cytokines/metabolism , Hippocampus/metabolism , Inflammation/metabolism , MEF2 Transcription Factors/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Postoperative Cognitive Complications/genetics , Postoperative Cognitive Complications/metabolism
3.
J Pain Res ; 13: 3081-3094, 2020.
Article in English | MEDLINE | ID: mdl-33262643

ABSTRACT

PURPOSE: Chemotherapy-induced painful neuropathy (CIPN) is a severe adverse effect of many anti-neoplastic drugs that is difficult to manage. Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter in the rostral ventromedial medulla (RVM), which modulates descending spinal nociceptive transmission. However, the influence of the descending 5-HT from the RVM on CIPN is poorly understood. We investigated the role of 5-HT released from descending RVM neurons in a paclitaxel-induced CIPN rat model. METHODS: CIPN rat model was produced by intraperitoneally injecting of paclitaxel. Pain behavioral assessments included mechanical allodynia and heat hyperalgesia. 5-HT content was analyzed by high-performance liquid chromatography (HPLC). Western blot and immunohistochemistry were used to determine tryptophan hydroxylase (Tph) and c-Fos expression. The inhibitors p-chlorophenylalanine (PCPA) and SB203580 were administrated by stereotaxical RVM microinjection. Ondansetron was injected through intrathecal catheterization. RESULTS: The results demonstrated that Tph, the rate-limiting enzyme in 5-HT synthesis, was significantly upregulated in the RVM, and that spinal 5-HT release was increased in CIPN rats. Intra-RVM microinjection of Tph inhibitor PCPA significantly attenuated mechanical and thermal pain behavior through Tph downregulation and decreased spinal 5-HT. Intra-RVM administration of p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580 alleviated paclitaxel-induced pain in a similar manner to PCPA. Intrathecal injection of ondansetron, a 5-HT3 receptor antagonist, partially reversed paclitaxel-induced pain, indicating that 5-HT3 receptors were involved in descending serotoninergic modulation of spinal pain processing. CONCLUSION: The results suggest that activation of the p38 MAPK pathway in the RVM leads to increased RVM Tph expression and descending serotoninergic projection to the spinal dorsal horn and contributes to the persistence of CIPN via spinal 5-HT3 receptors.

4.
Br J Anaesth ; 123(6): 827-838, 2019 12.
Article in English | MEDLINE | ID: mdl-31623841

ABSTRACT

BACKGROUND: Spinal cord injury induces inflammatory responses that include the release of cytokines and the recruitment and activation of macrophages and microglia. Neuroinflammation at the lesion site contributes to secondary tissue injury and permanent locomotor dysfunction. Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is anti-inflammatory and neuroprotective in both preclinical and clinical trials. We investigated the effect of DEX on the microglial response, and histological and neurological outcomes in a rat model of cervical spinal cord injury. METHODS: Anaesthetised rats underwent unilateral (right) C5 spinal cord contusion (75 kdyne) using an impactor device. The locomotor function, injury size, and inflammatory responses were assessed. The effect of DEX was also studied in a microglial cell culture model. RESULTS: DEX significantly improved the ipsilateral upper-limb motor dysfunction (grooming and paw placement; P<0.0001 and P=0.0012), decreased the injury size (P<0.05), spared white matter (P<0.05), and reduced the number of activated macrophages (P<0.05) at the injury site 4 weeks post-SCI. In DEX-treated rats after injury, tissue RNA expression indicated a significant downregulation of pro-inflammatory markers (e.g. interleukin [IL]-1ß, tumour necrosis factor-α, interleukin (IL)-6, and CD11b) and an upregulation of anti-inflammatory and pro-resolving M2 responses (e.g. IL-4, arginase-1, and CD206) (P<0.05). In lipopolysaccharide-stimulated cultured microglia, DEX produced a similar inflammation-modulatory effect as was seen in spinal cord injury. The benefits of DEX on these outcomes were mostly reversed by an α2-adrenergic receptor antagonist. CONCLUSIONS: DEX significantly improves neurological outcomes and decreases tissue damage after spinal cord injury, which is associated with modulation of neuroinflammation and is partially mediated via α2-adrenergic receptor signaling.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/pharmacology , Dexmedetomidine/pharmacology , Inflammation/drug therapy , Receptors, Adrenergic, alpha-2/drug effects , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/physiopathology , Animals , Cells, Cultured , Disease Models, Animal , Female , Microglia/drug effects , Rats , Rats, Long-Evans , Signal Transduction/drug effects , Spinal Cord/drug effects , Spinal Cord/physiopathology
5.
Cell Biochem Biophys ; 70(1): 241-9, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24659139

ABSTRACT

Bupivacaine is a sodium channel blocker, which is widely used for local infiltration nerve block, epidural and intrathecal anesthesia. However, bupivacaine could cause nerve damage. Hispidulin was shown to be able to penetrate the blood-brain barrier and possess antiepileptic activity. In this study, we investigate whether hispidulin administration could attenuate bupivacaine-induced neurotoxicity. Bupivacaine-challenged mouse neuroblastoma N2a cells were treated with hispidulin. The neuron injury was assessed by examination of cell viability and apoptosis. The levels of activation of AMP-activated protein kinase (AMPK) signaling pathway were examined along with the effect of blocking AMPK signaling on cell viability in the presence of hispidulin and bupivacaine. Our results showed that Bupivacaine treatment significantly decreased cell viability and induced apoptosis. Treatment with hispidulin significantly attenuated bupivacaine-induced cell injury. In addition, hispidulin treatment increased the levels of phospho-AMPK and phospho-GSK3ß and attenuated bupivacaine-induced loss in mitochondrial membrane potential. Furthermore, we found that blocking AMPK signaling pathway significantly abolished the cytoprotective effect of hispidulin against bupivacaine-induced cell injury. Our findings suggest that treatment of neuroblastoma cells with hispidulin-protected neural cells from Bupivacaine-induced injury via the activation of the AMPK/GSK3ß signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Bupivacaine/toxicity , Flavones/pharmacology , Neuroprotective Agents/pharmacology , Neurotoxins/toxicity , Signal Transduction/drug effects , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Enzyme Activation/drug effects , Membrane Potential, Mitochondrial/drug effects , Mice , Neurons/cytology , Neurons/drug effects , Phosphorylation/drug effects , Proteolysis/drug effects
6.
Cell Biochem Biophys ; 67(2): 591-8, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23471662

ABSTRACT

Sevoflurane, a common used inhaled anaesthetic, induces neuronal apoptosis in preclinical studies and correlates with functional neurological impairment. We investigated whether FTY720, a known sphingosine-1 phosphate (S1P) receptor agonist, could exert neuroprotective effect against sevoflurane-induced neurotoxicity. Neuroprotective effect of FTY720 was evaluated in vitro in hippocampal neuronal cells from neonatal rats and in vivo in rat pups. In vitro cell apoptosis was determined by flow cytometry after exposure to 3% sevoflurane for different period of time, or after 6-h exposure to sevoflurane with the presence of FTY720, SEW2871 (selective S1P1 receptor agonist) or combination of FTY720 and VPC23019 (S1P antagonist). Western blot analysis was performed with hippocampal tissue from rat pups exposed to 3% sevoflurane for 6 h with or without pre-treatment with FTY720 injection. Neurological function tests were also performed with rat pups exposed to 3% sevoflurane for 6 h with or without pre-treatment with FTY720 injection. FTY720, at nanomolar concentration, significantly prevents sevoflurane-induced neuronal apoptosis. SEW2871 showed similar neuroprotective effect to FTY720, whereas VPC23019 abrogated the neuroprotective effect of FTY720 when given together. Western blots results demonstrated that FTY710 significantly preserved the level of phosphorylated ERK1/2, Bcl-2 and Bax. Although anaesthetic treatment did not affect general health and emotional status, sevoflurane-induced cognitive impairment in rat models. Administration of FTY720 at 1 mg/kg significantly attenuated sevoflurane-induced neurocognitive impairment. Although further studies are needed to evaluate the feasibility of clinical usage of FTY720 as neuroprotective agent, the study provides preclinical experimental evidence for the efficacy of FTY720 against sevoflurane-induced developmental neurotoxicity.


Subject(s)
Methyl Ethers/adverse effects , Neuroprotective Agents/pharmacology , Neurotoxins/adverse effects , Propylene Glycols/pharmacology , Sphingosine/analogs & derivatives , Animals , Apoptosis/drug effects , Fingolimod Hydrochloride , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Lysosphingolipid/metabolism , Sevoflurane , Sphingosine/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...