Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 341: 118107, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37156022

ABSTRACT

Microplastics (MPs) in water pose a great threat to the ecological environment, but the impact of MPs on constructed wetland microbial fuel cells (CW-MFCs) has not been studied, so in order to fill the research gap and enrich the research in the field of microplastics, a 360-day experiment was designed to determine the operating status of CW-MFCs at different concentrations (0, 10, 100 and 1000 µg/L) polyethylene microplastics (PE-MPs) at different times, focusing on the changes of the CW-MFCs' ability to handle pollutants, power production performance and microbial composition. The results showed that with the accumulation of PE-MPs, the removal effect of COD and TP did not change significantly, and that the removal rate was maintained at around 90% and 77.9% respectively, within 120 d of operation. What's more, the denitrification efficiency increased (from 4.1% to 19.6%), but with the passage of time, it decreased significantly (from 7.16% to 31.9%) at the end of the experiment, while oxygen mass transfer rate was significantly increased. Further analysis showed that the accumulation of PE-MPs did not affect the current power density significantly with the changes of time and concentration, but the accumulation of PE-MPs would inhibit the exogenous electrical biofilm and increase the internal resistance, thereby affecting the electrochemical performance of the system. In addition, the results of microbial PCA showed that the composition and the activity of the microorganisms were changed under the action of PE-MPs, that the microbial community in CW-MFC showed a dose effect on the input of PE-MPs, and that the relative abundance of nitrifying bacteria with time was significantly affected by PE-MPs concentration. The relative abundance of denitrifying bacteria decreased over time, but PE-MPs promoted the reproduction of denitrifying bacteria, which was consistent with the changes in nitrification and denitrification rates. The removal modes of EP-MPs by CW-MFC include the adsorption and the electrochemical degradation, with two isothermal adsorption models of Langmuir and Freundlich being constructed in the experiment, and the electrochemical degradation process of EP-MPs being simulated. In summary, the results show that the accumulation of PE-MPs can induce a series of changes in substrate, microbial species and activity of CW-MFCs, which in turn affects the pollutant removal efficiency and power generation performance during its operation.


Subject(s)
Bioelectric Energy Sources , Microplastics , Plastics , Polyethylene , Wetlands , Wastewater , Bacteria
2.
Environ Res ; 218: 115032, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36502909

ABSTRACT

Reclaimed water is widely concerned as an effective recharge of groundwater and surface water, but trace organic pollutants produced by traditional wastewater treatment plants (WWTPs) would cause environmental pollution (water and soil) during infiltration. Therefore, the effects of reclaimed water containing ofloxacin (OFL) and ciprofloxacin (CIP) in antibiotics polluted natural soil (APNS) were investigated by simulating soil aquifer treatment systems (SATs). The experiment results showed that OFL and CIP in water were adsorbed and microbially degraded mainly at 30 cm, and the concentration of OFL and CIP in soil increased with depth, which were mainly due to the desorption from APNS. Concurrently, the change in replenishment water concentration also significantly affected OFL and CIP in pore water and soil. Although OFL and CIP inhibited the diversity of soil microbial community, they also promoted the growth of some microorganisms. As the dominant bacteria, Proteobacteria and Acidobacteriota can effectively participate in the degradation of OFL and CIP. The degradation effects of soil microorganisms on OFL and CIP were 45.48% and 42.39%, respectively, indicating that soil microorganisms selectively degraded pollutants. This experiment was carried out on APNS, which provided a reference for future studies on the migration of trace organic pollutants under natural conditions.


Subject(s)
Soil Pollutants , Water Pollutants, Chemical , Anti-Bacterial Agents/analysis , Soil , Water , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Ofloxacin/analysis , Ciprofloxacin , Water Pollution , Soil Pollutants/toxicity , Soil Pollutants/analysis
3.
BMC Cardiovasc Disord ; 22(1): 505, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435743

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is one of the leading causes of death in human being, and an effective diagnostic biomarker is still lacking. Whilst some gene association with AMI has been identified by RNA sequencing (RNA-seq), the relationship between alternative splicing and AMI is not clear. METHODS: We retrieved myocardial tissues within 24 h from mice with induced AMI and sham, and analysed the differentially expressed genes (DEGs) and differential alternative splicing genes (DASGs) by RNA-seq. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and protein interaction network analysis were performed on DEGs-DASGs-overlap genes. PCR was used to verify the expression levels of representative genes and alternative splicing in myocardial tissues of AMI and sham mice. RESULTS: 1367 DEGs were identified, including 242 up-regulated and 1125 down-regulated genes, among which there were 42 DASGs. GO analysis showed that the cellular component was primarily enriched in plasma membrane, cell membrane integrity and extracellular region. The molecular function was enriched in protein binding and metal ion binding. The biological process was primarily enriched in cell adhesion, immune system process and cell differentiation. KEGG analysis showed the enrichment was mainly in JAK-STAT and PI3K-AKT signalling pathway. Postn, Fhl1, and Fn1 were low-expressed while Postn alternative splicing was high-expressed in myocardial tissue of AMI mice, which was consistent with sequencing results. CONCLUSIONS: The pathogenesis of AMI involves differentially expressed genes and differential alternative splicing. These differentially expressed genes and their alternative splicing, especially, Fhl1, Fn1 and Postn may become new biomarkers of AMI.


Subject(s)
Alternative Splicing , Myocardial Infarction , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/genetics , Biomarkers , Myocardial Infarction/diagnosis , Myocardial Infarction/genetics , Protein Interaction Maps/genetics , Disease Models, Animal , Muscle Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics
4.
Small ; 18(39): e2202792, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36038360

ABSTRACT

The portable power bank as an energy storage device has received tremendous attention while the limited capacity and periodical charging are critical issues. Here, a self-charging power system (SCPS) consisting of a 0.94(Bi0.5 Na0.5 )TiO3 -0.06Ba(Zr0.25 Ti0.75 )O3 /polyvinylidenefluoride (BNT-BZT/PVDF) composite film-based triboelectric nanogenerator (TENG) is designed as a wind energy harvester and an all-solid-state lithium-ion battery (ASSLIB) as the energy storage device. The optimized TENG can provide an output voltage of ≈400 V, a current of ≈45 µA, and a maximum power of ≈10.65 mW, respectively. The ASSLIB assembled by LiNiCoMnO2 as the cathode, NiCo2 S4 as the anode, and Li7 La3 Zr2 O12 as the solid electrolyte can maintain a discharge capacity of 51.3 µAh after 200 cycles with a Coulombic efficiency of 98.5%. Particularly, an ASSLIB can be easily charged up to 3.8 V in 58 min using the wind-driven TENG, which can continuously drive 12 parallel-connected white light-emitting diodes (LEDs) or a pH meter. This work demonstrates the development of low-cost, high-performance and high-safety SCPSs and their large-scale practical application in self-powered microelectronic devices.

5.
Chemosphere ; 297: 134146, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35231478

ABSTRACT

In this research, Ti/SnO2-RuO2 stable anode was successfully prepared by thermal decomposition method, and low concentration cefotaxime sodium (CFX) was degraded by green and sustainable electrocatalytic oxidation technology. The electrocatalytic activity and stability of the Ti/SnO2-RuO2 coating electrode were studied according to the polarization curve of oxygen and chlorine evolution. The effects of current density, initial concentration, pH, electrolyte concentration, and other technological parameters on the degradation efficiency were discussed. Orthogonal experiment results indicated that when the current density was 25 mA cm-2, concentration of electrolyte was 5 mM and the pH value was 7, the best CFX removal rate of 86.33% could be obtained. The degradation efficiency of electrocatalytic oxidation was discussed through electrochemical analysis. Fourier transform infrared spectroscopy was used to analyze the different inlet and outlet stages before and after the degradation of CFX, and the possible degradation process was discussed. Therefore, the electrocatalytic oxidation of Ti/SnO2-RuO2 electrode was a clean and efficient technology, which could be widely used in the treatment of CFX wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Cefotaxime , Electrodes , Feasibility Studies , Oxidation-Reduction , Tin Compounds/chemistry , Titanium/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry
6.
Front Genet ; 13: 844622, 2022.
Article in English | MEDLINE | ID: mdl-35299950

ABSTRACT

Orchids constitute approximately 10% of flowering plant species. However, only about 10 orchid genomes have been published. Metabolites are the main way through which orchids respond to their environment. Dendrobium nobile, belonging to Dendrobium, the second largest genus in Orchidaceae, has high ornamental, medicinal, and ecological value. D. nobile is the source of many popular horticultural varieties. Among the Dendrobium species, D. nobile has the highest amount of dendrobine, which is regarded as one of the criteria for evaluating medicinal quality. Due to lack of data and analysis at the genomic level, the biosynthesis pathways of dendrobine and other related medicinal ingredients in D. nobile are unknown. In this paper, we report a chromosome-scale reference genome of D. nobile to facilitate the investigation of its genomic characteristics for comparison with other Dendrobium species. The assembled genome size of D. nobile was 1.19 Gb. Of the sequences, 99.45% were anchored to 19 chromosomes. Furthermore, we identified differences in gene number and gene expression patterns compared with two other Dendrobium species by integrating whole-genome sequencing and transcriptomic analysis [e.g., genes in the polysaccharide biosynthesis pathway and upstream of the alkaloid (dendrobine) biosynthesis pathway]. Differences in the TPS and CYP450 gene families were also found among orchid species. All the above differences might contribute to the species-specific medicinal ingredient biosynthesis pathways. The metabolic pathway-related analysis will provide further insight into orchid responses to the environment. Additionally, the reference genome will provide important insights for further molecular elucidation of the medicinal active ingredients of Dendrobium and enhance the understanding of orchid evolution.

7.
Environ Pollut ; 285: 117517, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34380219

ABSTRACT

The increase of water temperature caused by the thermal effect of cooling water discharged from power plants has become a major environmental problem, especially its influence on phytoplankton community. The change of water temperature usually reshapes the structure of phytoplankton community. A research combining phytoplankton community and thermal discharge of power plants was conducted to identify the potential influences. Results indicated the average annual water temperature of the reservoir increased gradually by 5-11 °C because of the thermal discharge. Through annual diversity analysis, 139 species or taxa from 6 phyla (i.e., Bacillariophyta, Chlorophyta, Cyanobacteria, Euglenophyta, Dinoflagellata, and Cryptophyta) were found in different sampling sites, among which Bacillariophyta was the dominant community. Preliminary experimental results revealed the increasing temperature completely reshaped the phytoplankton community structure, especially during the cold season, and this was confirmed by the results of redundancy analysis. In addition, lots of thermophilic genera (i.e., Synedra, Nitzschia, and Navicula) were detected at sampling station 1 (Spt1) and sampling station 2 (Spt2) where the effect of thermal discharge was the most obvious. The increase in biomass and cell count of Bacillariophyta was the result of thermal effect, especially in cold season. Besides, consequences also revealed some environmental parameters (i.e., dissolved oxygen concentration, chlorophyll a concentration, and transparency) were affected by the thermal discharge. Chlorophyll a concentration exhibited a slow rising trend while dissolved oxygen concentration and transparency gradually decreased.


Subject(s)
Diatoms , Phytoplankton , China , Chlorophyll A , Environmental Monitoring , Phosphorus/analysis , Power Plants , Seasons , Water
8.
Environ Sci Pollut Res Int ; 28(38): 53224-53238, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34023990

ABSTRACT

With the increasing eutrophication of the aquatic environments, cyanobacteria blooms caused certain damage to the animals and plants in the aquatic environments. In this experiment, two species were selected from six species of submerged macrophytes, the experimental conditions were changed to achieve the best inhibitory effect on Microcystis aeruginosa, and oxidative damage analysis was carried out. The experiment results demonstrated that the inhibition rate of Vallisneria natans and Ceratophyllum demersum was nearly 100% at the concentration of 3 g/L after 15 days of anaerobic soaking extract. In addition, the longer the soaking time of the two submerged macrophytes, the weaker the photosynthesis effect, and the lower the chlorophyll fluorescence parameters, the more obvious the inhibition effect on M. aeruginosa. Lipid peroxidation injury of M. aeruginosa could be reflected by malondialdehyde (MDA) concentration. The MDA concentration in the experimental group was significantly higher than the control group. Results showed that V. natans and C. demersum could induce oxidative damage in M. aeruginosa. It was also observed that the secondary metabolites produced by V. natans were mainly fatty acids (e.g., the oxidative acid was 6.92 w/%, and the successful acid was 9.85 w/%) which inhibited M. aeruginosa in gas chromatography-mass spectrometry (GC-MS). The main secondary metabolites in C. demersum were hydroxyl acids (e.g., the 4-hydroxy-3-methoxyphenylacetic acid was 24.33 w/%), which could inhibit the algae through allelopathy. This study provided reference for submerged macrophytes to inhibit M. aeruginosa under different conditions.


Subject(s)
Hydrocharitaceae , Microcystis , Lipid Peroxidation , Malondialdehyde , Oxidative Stress
9.
Brain Behav ; 10(9): e01714, 2020 09.
Article in English | MEDLINE | ID: mdl-32681606

ABSTRACT

INTRODUCTION: Adolescence is a period of heightened susceptibility to anxiety disorders. Probiotic supplementation had a positive impact on reducing anxiety. The maternal microbiome plays an important role in child health outcomes and in the establishment of the offspring microbiome. Few studies have investigated the impact of gestational probiotic supplementation on the offspring's anxiety. METHODS: The present study examined the impact of prenatal Lactobacillus helveticus NS8 supplementation (LAC) on Sprague Dawley rat offspring's anxiety-like behavior. The behaviors tested in the present study include the elevated plus maze (EPM), the open field test (OFT), and prepulse inhibition (PPI). Analyses of variance were utilized. RESULTS: (a) The performance of LAC adolescent rats in the EPM was similar to that in the OFT, both of which reflect that LAC caused an antianxiety effect in adolescent offspring rats and the antianxiety effect without sex differences; (b) LAC did not change performance in PPI and did not change the sex and age differences in PPI; and c. LAC decreased the body mass of rat offspring. CONCLUSION: Lactobacillus helveticus NS8 supplementation during gestation might have a moderate antianxiety effect in both males and females (especially adolescents) and be helpful for avoiding excessive body mass.


Subject(s)
Anti-Anxiety Agents , Lactobacillus helveticus , Prenatal Exposure Delayed Effects , Animals , Anxiety/drug therapy , Female , Male , Pregnancy , Rats , Rats, Sprague-Dawley , Sex Characteristics
10.
Int J Dev Neurosci ; 80(6): 464-476, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32358823

ABSTRACT

Adolescence is a remarkable period of brain development. Prenatal stress can increase the risk of various neuropsychiatric disorders. This research investigated neurochemical and behavioural changes in the offspring rats (especially adolescences) who were treated with repeated variable prenatal stress (PNS) during the third week of gestation. The study tested the concentration of brain-derived neurotrophic factor (BDNF), cluster of differentiation 68 (CD68), synaptotagmin-1(Syt-1), 5-hydroxytryptamine (5-HT), dopamine (DA), glucocorticoid receptors (GRs) and oestrogen receptors (ERs) in the PFC (prefrontal cortex). We also tested prepulse inhibition (PPI) of the acoustic startle reflex (ASR) (a measure of sensorimotor gating). The main results were as follows: PNS increased the BDNF and CD68 concentrations in adolescent females, and increased the Syt-1 concentration in adolescent males. The increases in BDNF/CD68 concentration (in females) and Syt-1/DA concentration (in males) with age were disturbed by PNS, and PNS changed the sex differences in CD68 concentration in adolescence and disturbed the sex differences in the Syt-1 concentration (in adolescence) and DA concentration (in adults). In conclusion, we found that PNS lead to Sex-dependent aberrant PFC development, and might accelerate the development of the adolescent PFC, and so that lessened the age difference (between adolescence and adulthood) and the sex difference.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Dopamine/metabolism , Prefrontal Cortex/growth & development , Prenatal Exposure Delayed Effects/pathology , Serotonin/metabolism , Sex Characteristics , Stress, Psychological/pathology , Acoustic Stimulation , Animals , Female , Male , Prefrontal Cortex/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/metabolism , Prepulse Inhibition/physiology , Rats , Receptors, Estrogen/metabolism , Receptors, Glucocorticoid/metabolism , Reflex, Startle/physiology , Sex Factors , Stress, Psychological/metabolism , Synaptotagmins/metabolism
11.
Int J Mol Sci ; 19(9)2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30200389

ABSTRACT

Self-incompatibility (SI) is a type of reproductive barrier within plant species and is one of the mechanisms for the formation and maintenance of the high diversity and adaptation of angiosperm species. Approximately 40% of flowering plants are SI species, while only 10% of orchid species are self-incompatible. Intriguingly, as one of the largest genera in Orchidaceae, 72% of Dendrobium species are self-incompatible, accounting for nearly half of the reported SI species in orchids, suggesting that SI contributes to the high diversity of orchid species. However, few studies investigating SI in Dendrobium have been published. This study aimed to address the following questions: (1) How many SI phenotypes are in Dendrobium, and what are they? (2) What is their distribution pattern in the Dendrobium phylogenetic tree? We investigated the flowering time, the capsule set rate, and the pollen tube growth from the representative species of Dendrobium after artificial pollination and analysed their distribution in the Asian Dendrobium clade phylogenetic tree. The number of SI phenotypes exceeded our expectations. The SI type of Dendrobium chrysanthum was the primary type in the Dendrobium SI species. We speculate that there are many different SI determinants in Dendrobium that have evolved recently and might be specific to Dendrobium or Orchidaceae. Overall, this work provides new insights and a comprehensive understanding of Dendrobium SI.


Subject(s)
Biological Evolution , Dendrobium/classification , Dendrobium/genetics , Self-Incompatibility in Flowering Plants/genetics , Flowers/genetics , Flowers/growth & development , Fruit/genetics , Fruit/growth & development , Phenotype , Phylogeny , Pollen Tube/genetics , Pollen Tube/growth & development , Pollination , Seeds/genetics , Time Factors
12.
J Org Chem ; 83(17): 9958-9967, 2018 09 07.
Article in English | MEDLINE | ID: mdl-29993245

ABSTRACT

A new and facile AgSbF6-mediated protocol for the construction of C-4 thiolated or selenylated isoquinolin-1(2 H)-ones via a radical pathway was established. This reaction proceeded efficiently with excellent regioselectivity, a broad substrate scope, and good functional group tolerance. A radical reaction mechanism involving thiyl radicals as key intermediates is proposed for the present transformation.

SELECTION OF CITATIONS
SEARCH DETAIL
...