Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38613011

ABSTRACT

Chinese yam is a "medicine food homology" food with medical properties, but little is known about its health benefits on hyperlipidemia. Furthermore, the effect of peeling processing on the efficacy of Chinese yam is still unclear. In this study, the improvement effects of whole Chinese yam (WY) and peeled Chinese yam (PY) on high-fat-diet (HFD)-induced hyperlipidemic mice were explored by evaluating the changes in physiological, biochemical, and histological parameters, and their modulatory effects on gut microbiota were further illustrated. The results show that both WY and PY could significantly attenuate the HFD-induced obesity phenotype, accompanied by the mitigative effect on epididymis adipose damage and hepatic tissue injury. Except for the ameliorative effect on TG, PY retained the beneficial effects of WY on hyperlipemia. Furthermore, 16S rRNA sequencing revealed that WY and PY reshaped the gut microbiota composition, especially the bloom of several beneficial bacterial strains (Akkermansia, Bifidobacterium, and Faecalibaculum) and the reduction in some HFD-dependent taxa (Mucispirillum, Coriobacteriaceae_UCG-002, and Candidatus_Saccharimonas). PICRUSt analysis showed that WY and PY could significantly regulate lipid transport and metabolism-related pathways. These findings suggest that Chinese yam can alleviate hyperlipidemia via the modulation of the gut microbiome, and peeling treatment had less of an effect on the lipid-lowering efficacy of yam.


Subject(s)
Dioscorea , Gastrointestinal Microbiome , Hyperlipidemias , Male , Animals , Mice , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/genetics , Obesity , Lipids
2.
J Sci Food Agric ; 104(5): 2561-2573, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-37935642

ABSTRACT

Plant protein is rapidly becoming more of a prime interest to consumers for its nutritional and functional properties, as well as the potential to replace animal protein. In the frame of alternative protein new sources, mung bean is becoming another legume crop that could provide high quality plant protein after soybean and pea. In particular, the 8S globulins in mung bean protein have high structural similarity and homology with soybean ß-conglycinin (7S globulin), with 68% sequence identity. Currently, mung bean protein has gained popularity in food industry because of its high nutritional value and peculiar functional properties. In that regard, various modification technologies have been applied to further broaden its application. Here, we provide a review of the composition, nutritional value, production methods, functional properties and modification technologies of mung bean protein. Furthermore, its potential applications in the new plant-based products, meat products, noodles, edible packaging films and bioactive compound carriers are highlighted to facilitate its utilization as an alternative plant protein, thus meeting consumer demands for high quality plant protein resources. © 2023 Society of Chemical Industry.


Subject(s)
Fabaceae , Vigna , Animals , Vigna/chemistry , Plant Proteins/metabolism , Fabaceae/chemistry , Glycine max
3.
BMC Plant Biol ; 23(1): 586, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37993773

ABSTRACT

BACKGROUND: Mitochondrial genomes are essential for deciphering the unique evolutionary history of seed plants. However, the rules of their extreme variation in genomic size, multi-chromosomal structure, and foreign sequences remain unresolved in most plant lineages, which further hindered the application of mitogenomes in phylogenetic analyses. RESULTS: Here, we took Dendrobium (Orchidaceae) which shows the great divergence of morphology and difficulty in species taxonomy as the study focus. We first de novo assembled two complete mitogenomes of Dendrobium wilsonii and Dendrobium henanense that were 763,005 bp and 807,551 bp long with multichromosomal structures. To understand the evolution of Dendrobium mitogenomes, we compared them with those of four other orchid species. The results showed great variations of repetitive and chloroplast-derived sequences in Dendrobium mitogenomes. Moreover, the intergenic content of Dendrobium mitogenomes has undergone expansion during evolution. We also newly sequenced mitogenomes of 26 Dendrobium species and reconstructed phylogenetic relationships of Dendrobium based on genomic mitochondrial and plastid data. The results indicated that the existence of chloroplast-derived sequences made the mitochondrial phylogeny display partial characteristics of the plastid phylogeny. Additionally, the mitochondrial phylogeny provided new insights into the phylogenetic relationships of Dendrobium species. CONCLUSIONS: Our study revealed the evolution of Dendrobium mitogenomes and the potential of mitogenomes in deciphering phylogenetic relationships at low taxonomic levels.


Subject(s)
Dendrobium , Genome, Mitochondrial , Orchidaceae , Phylogeny , Orchidaceae/genetics , Dendrobium/genetics , Genome, Mitochondrial/genetics , Genomics/methods , Base Sequence
4.
Plants (Basel) ; 12(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765364

ABSTRACT

Dendrobium orchids, which are among the most well-known species of orchids, are appreciated for their aesthetic appeal across the globe. Furthermore, due to their strict living conditions, they have accumulated high levels of active ingredients, resulting not only in their medicinal value but also in their strong ability to respond to harsh environments. The TCP gene family plays an important role in plant growth and development, and signal transduction. However, these genes have not been systematically investigated in Dendrobium species. In this study, we detected a total of 24, 23, and 14 candidate TCP members in the genome sequences of D. officinale, D. nobile, and D. chrysotoxum, respectively. These genes were classified into three clades on the basis of a phylogenetic analysis. The TCP gene numbers among Dendrobium species were still highly variable due to the independent loss of genes in the CIN clade. However, only three gene duplication events were detected, with only one tandem duplication event (DcTCP9/DcTCP10) in D. chrysotoxum and two pairs of paralogous DoTCP gene duplication events (DoTCP1/DoTCP23 and DoTCP16/DoTCP24) in D. officinale. A total of 25 cis-acting elements of TCPs related to hormone/stress and light responses were detected. Among them, the proportions of hormone response, light response, and stress response elements in D. officinale (100/421, 127/421, and 171/421) were similar to those in D. nobile (83/352, 87/352, and 161/352). Using qRT-PCR to determine their expression patterns under MeJA treatment, four DoTCPs (DoTCP2, DoTCP4, DoTCP6, and DoTCP14) were significantly upregulated under MeJA treatment, which indicates that TCP genes may play important roles in responding to stress. Under ABA treatment, seven DoTCPs (DoTCP3, DoTCP7, DoTCP9, DoTCP11, DoTCP14, DoTCP15, and DoTCP21) were significantly upregulated, indicating that TCP genes may also play an important role in hormone response. Therefore, these results can provide useful information for studying the evolution and function of TCP genes in Dendrobium species.

5.
Nutrients ; 15(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37447359

ABSTRACT

Disturbances in the gut microbiota and its derived metabolites are closely related to the occurrence and development of hepatic steatosis. The white kidney bean (WKB), as an excellent source of protein, dietary fiber, and phytochemicals, has recently received widespread attention and might exhibit beneficial effects on a high-fat diet (HFD)-induced hepatic steatosis via targeting gut microbiota and its metabolites. The results indicated that HFD, when supplemented with WKB for 12 weeks, could potently reduce obesity symptoms, serum lipid profiles, and glucose, as well as improve the insulin resistance and liver function markers in mice, thereby alleviating hepatic steatosis. An integrated fecal microbiome and metabolomics analysis further demonstrated that WKB was able to normalize HFD-induced gut dysbiosis in mice, thereby mediating the alterations of a wide range of metabolites. Particularly, WKB remarkably increased the relative abundance of probiotics (Akkermansiaceae, Bifidobacteriaceae, and norank_f_Muribaculaceae) and inhibited the growth of hazardous bacteria (Mucispirillum, Enterorhabdus, and Dubosiella) in diet-induced hepatic steatosis mice. Moreover, the significant differential metabolites altered by WKB were annotated in lipid metabolism, which could ameliorate hepatic steatosis via regulating glycerophospholipid metabolism. This study elucidated the role of WKB from the perspective of microbiome and metabolomics in preventing nonalcoholic fatty liver disease, which provides new insights for its application in functional foods.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Phaseolus , Animals , Mice , Liver/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , Non-alcoholic Fatty Liver Disease/metabolism , Diet, High-Fat/adverse effects , Bacteria , Mice, Inbred C57BL
6.
BMC Plant Biol ; 23(1): 189, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37038109

ABSTRACT

Dendrobium orchids have multiple photosynthetic pathways, which can be used as a model system for studying the evolution of crassulacean acid metabolism (CAM). In this study, based on the results of the net photosynthetic rates (Pn), we classified Dendrobium species into three photosynthetic pathways, then employed and compared their chloroplast genomes. The Dendrobium chloroplast genomes have typical quartile structures, ranging from 150,841-153,038 bp. The apparent differences in GC content, sequence variability, and IR junctions of SSC/IRB junctions (JSBs) were measured within chloroplast genomes among different photosynthetic pathways. The phylogenetic analysis has revealed multiple independent CAM origins among the selected Dendrobium species. After counting insertions and deletions (InDels), we found that the occurrence rates and distribution densities among different photosynthetic pathways were inconsistent. Moreover, the evolution patterns of chloroplast genes in Dendrobium among three photosynthetic pathways were also diversified. Considering the diversified genome structure variations and the evolution patterns of protein-coding genes among Dendrobium species, we proposed that the evolution of the chloroplast genomes was disproportional among different photosynthetic pathways. Furthermore, climatic correlation revealed that temperature and precipitation have influenced the distribution among different photosynthetic pathways and promoted the foundation of CAM pathway in Dendrobium orchids. Based on our study, we provided not only new insights into the CAM evolution of Dendrobium but also provided beneficial genetic data resources for the further systematical study of Dendrobium.


Subject(s)
Dendrobium , Genome, Chloroplast , Phylogeny , Dendrobium/genetics , Climate Change , Chloroplasts/genetics , Evolution, Molecular
7.
Crit Rev Food Sci Nutr ; : 1-23, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096548

ABSTRACT

Gamma-aminobutyric acid (GABA) is a naturally occurring potential bioactive compound present in plants, microorganisms, animals, and humans. Especially, as a main inhibitory neurotransmitter in the central nervous system, GABA possesses a broad spectrum of promising bioactivities. Thus, functional foods enriched with GABA have been widely sought after by consumers. However, the GABA levels in natural foods are usually low, which cannot meet people's demand for health effects. With the increasing public awareness on the food securities and naturally occurring processes, using enrichment technologies to elevate the GABA contents in foods instead of exogenous addition can enhance the acceptability of health-conscious consumers. Herein, this review provides a comprehensive insight on the dietary sources, enrichment technologies, processing effects of GABA, and its applications in food industry. Furthermore, the various health benefits of GABA-enriched foods, mainly including neuroprotection, anti-insomnia, anti-depression, anti-hypertensive, anti-diabetes, and anti-inflammatory are also summarized. The main challenges for future research on GABA are related to exploring high GABA producing strains, enhancing the stability of GABA during storage, and developing emerging enrichment technologies without affecting food quality and other active ingredients. A better understanding of GABA may introduce new windows for its application in developing functional foods.

8.
BMC Plant Biol ; 22(1): 529, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376794

ABSTRACT

BACKGROUND: Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS: In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION: Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.


Subject(s)
Dendrobium , Salicylic Acid , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Dendrobium/genetics , Dendrobium/metabolism , Plant Growth Regulators/metabolism , Disease Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Plant Breeding , Transcriptome
9.
Front Plant Sci ; 13: 979801, 2022.
Article in English | MEDLINE | ID: mdl-36035705

ABSTRACT

Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.

10.
BMC Plant Biol ; 22(1): 201, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35439926

ABSTRACT

BACKGROUND: Because chloroplast (cp) genome has more conserved structures than nuclear genome and mitochondrial genome, it is a useful tool in estimating the phylogenetic relationships of plants. With a series of researches for cp genomes, there have been comprehensive understandings about the cp genome features. The genus Bulbophyllum widely distributed in Asia, South America, Australia and other places. Therefore, it is an excellent type genus for studying the effects of geographic isolation. RESULTS: In this study, the cp genomes of nine Bulbophyllum orchids were newly sequenced and assembled using the next-generation sequencing technology. Based on 19 Asian (AN) and eight South American (SA) Bulbophyllum orchids, the cp genome features of AN clade and SA clade were compared. Comparative analysis showed that there were considerable differences in overall cp genome features between two clades in three aspects, including basic cp genome features, SSC/IRB junctions (JSBs) and mutational hotspots. The phylogenetic analysis and divergence time estimation results showed that the AN clade has diverged from the SA clade in the late Oligocene (21.50-30.12 mya). After estimating the occurrence rates of the insertions and deletions (InDels), we found that the change trends of cp genome structures between two clades were different under geographic isolation. Finally, we compared selective pressures on cp genes and found that long-term geographic isolation made AN and SA Bulbophyllum cp genes evolved variably. CONCLUSION: The results revealed that the overall structural characteristics of Bulbophyllum cp genomes diverged during the long-term geographic isolation, and the crassulacean acid metabolism (CAM) pathway may play an important role in the Bulbophyllum species evolution.


Subject(s)
Genome, Chloroplast , Orchidaceae , Asia , Australia , Genome, Chloroplast/genetics , Orchidaceae/genetics , Phylogeny
11.
Plant Methods ; 18(1): 10, 2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35065671

ABSTRACT

BACKGROUND: Dendrobium nobile Lindl. is an important pharmacopeial plant with medicinal and ornamental value. This study sought to provide a technical means for the large-scale production of total alkaloid in D. nobile. Seedlings were cultured in vitro using a temporary immersion bioreactor system (TIBS). The four tested immersion frequencies (min/h; 5/2, 5/4, 5/6, and 5/8) influenced the production of biomass and total alkaloid content. In addition, to compare the effects of different concentrations of the phytohormone methyl jasmonate (MeJA) and treatment time on biomass and total alkaloid accumulation, MeJA was added to the TIBS medium after 50 days. Finally, total alkaloid production in semi-solid system (SSS), TIBS, and TIBS combined with the MeJA system (TIBS-MeJA) were compared. RESULTS: The best immersion frequency was found to be 5/6 (5 min every 6 h), which ensured appropriate levels of biomass and total alkaloid content in plantlets. The alkaloid content and production level of seedlings were the highest after treatment with 10 µM MeJA separately for 20 and 30 days using TIBS. The maximum content (7.41 mg/g DW) and production level (361.24 mg/L) of total alkaloid on use of TIBS-MeJA were 2.32- and 4.69-fold, respectively, higher in terms of content, and 2.07- and 10.49-fold, respectively, higher in terms of production level than those on using of TIBS (3.20 mg/g DW, 174.34 mg/L) and SSS (1.58 mg/g DW, 34.44 mg/L). CONCLUSIONS: Our results show TIBS-MeJA is suitable for large-scale production of total alkaloid in in vitro seedlings. Therefore, this study provides a technical means for the large-scale production of total alkaloid in D. nobile.

12.
Mitochondrial DNA B Resour ; 6(9): 2638-2639, 2021.
Article in English | MEDLINE | ID: mdl-34409163

ABSTRACT

Oxystophyllum changjiangense has high economic value due to its wide applications in horticultural and medicinal fields. Here, the first chloroplast genome of O. changjiangense was sequenced and reported. The chloroplast genome displayed the typical quadripartite structure containing a pair of inverted repeats (IR), a long single-copy region (LSC), and a short single-copy region (SSC). Total 110 genes were found including 76 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogeny analysis showed O. changjiangense has a close relationship with Phaius species.

13.
Acta Pharm Sin B ; 11(7): 2080-2092, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34386340

ABSTRACT

Dendrobium officinale, an important medicinal plant of the genus Dendrobium in Orchidaceae family, has been used as traditional Chinese medicine (TCM) for nearly thousands of years. Here, we report the first chromosome-level reference genome of D. officinale, based on PacBio long-reads, Illumina short-reads and Hi-C data. The high-quality assembled genome is 1.23 Gb long, with contig N50 of 1.44 Mb. A total of 93.53% genome sequences were assembled into 19 pseudochromosomes with a super scaffold N50 of 63.07 Mb. Through comparative genomic analysis, we explored the expanded gene families of D. officinale, and also their impact on environmental adaptation and biosynthesis of secondary metabolites. We further performed detailed transcriptional analysis of D. officinale, and identified the candidate genes involved in the biosynthesis of three main active ingredients, including polysaccharides, alkaloids and flavonoids. In addition, the MODIFYING WALL LIGNIN-1 (MWL1) gene, which inferred from Genome-Wide Association Studies (GWAS) based on the resequencing date from D. officinale and five related species and their morphologic features, may contribute to the plant production (yield of stems) of D. officinale. Therefore, the high-quality reference genome reported in this study could benefits functional genomics research and molecular breeding of D. officinale.

14.
Acta Pharm Sin B ; 10(10): 1989-2001, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33163349

ABSTRACT

Having great medicinal values, Dendrobium species of "Fengdou" (DSFs) are a taxonomically complex group in Dendrobium genus including many closely related and recently diverged species. Traditionally used DNA markers have been proved to be insufficient in authenticating many species of this group. Here, we investigated 101 complete plastomes from 23 DSFs, comprising 72 newly sequenced and 29 documented, which all exhibited well-conserved genomic organization and gene order. Plastome-wide comparison showed the co-occurrence of single nucleotide polymorphisms (SNPs) and insertions/deletions (indels), which can be explained by both the repeat-associated and indel-associated mutation hypotheses. Moreover, guanine-cytosine (GC) content was found to be negatively correlated with the three divergence variables (SNPs, indels and repeats), indicating that GC content may reflect the level of the local sequence divergence. Our species authentication analyses revealed that the relaxed filtering strategies of sequence alignment had no negative impact on species identification. By assessing the maximum likelihood (ML) trees inferred from different datasets, we found that the complete plastome and large single-copy (LSC) datasets both successfully identified all 23 DSFs with the maximum bootstrap values. However, owing to the high efficiency of LSC in species identification, we recommend using LSC for accurate authentication of DSFs.

15.
Ecol Evol ; 10(12): 5332-5342, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607156

ABSTRACT

Comparative plastomics approaches have been used to identify available molecular markers for different taxonomic level studies of orchid species. However, the adoption of such methods has been largely limited in phylogeographic studies. Therefore, in this study, Dendrobium huoshanense, an endangered species with extremely small populations, was used as a model system to test whether the comparative plastomic approaches could screen available molecular markers for the phylogeographic study. We sequenced two more plastomes of D. huoshanense and compared them with our previously published one. A total of 27 mutational hotspot regions and six polymorphic cpSSRs have been screened for the phylogeographic studies of D. huoshanense. The cpDNA haplotype data revealed that the existence of haplotype distribution center was located in Dabieshan Mts. (Huoshan). The genetic diversity and phylogenetic analyses showed that the populations of D. huoshanense have been isolated and evolved independently for long period. On the contrary, based on cpSSR data, the genetic structure analysis revealed a mixed structure among the populations in Anhui and Jiangxi province, which suggested that the hybridization or introgression events have occurred among the populations of D. huoshanense. These results indicated that human activities have played key roles in shaping the genetic diversity and distributional patterns of D. huoshanense. According to our results, both two markers showed a high resolution for the phylogeographic studies of D. huoshanense. Therefore, we put forth that comparative plastomic approaches could revealed available molecular markers for phylogeographic study, especially for the species with extremely small populations.

16.
Mitochondrial DNA B Resour ; 4(2): 3860-3861, 2019 Nov 08.
Article in English | MEDLINE | ID: mdl-33366222

ABSTRACT

Dendrobium hancockii Rolfe is a rare and endangered species endemic to China, with great medicinal value. Here, the first complete chloroplast genome sequence of D. hancockii was reported and characterized. The cpDNA exhibited the typical quadripartite structure of four parts: a long single-copy region, a short single-copy region and two inverted repeats. It encodes 106 genes, consisting of 72 unique protein-coding genes, 30 unique tRNA gene, and 4 unique rRNA genes. The phylogenetic analysis indicated that D. hancockii is basal-most species for the sect. Dendrobium.

17.
Mitochondrial DNA B Resour ; 5(1): 59-60, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33366421

ABSTRACT

Bulbophyllum disciflorum is one of Orchidaceae species, which has important ornamental and economic value. Here, we reported the first chloroplast genome sequence of Bulbophyllum. The genome of B. disciflorum is 148,554 bp in length, including a large single-copy (LSC) of 79,001 bp, a small single-copy (SSC) of 16,797 bp, and a pair of inverted repeat regions (IRa and IRb) of 26,378bp. It contains 108 unique genes consisting of 74 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. The phylogenetic analysis revealed that Bulbophyllum is sister to the genus of Dendrobium.

18.
Acta Pharm Sin B ; 8(6): 969-980, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30505665

ABSTRACT

Owing to its great medicinal and ornamental values, Dendrobium officinale is frequently adulterated with other Dendrobium species on the market. Unfortunately, the utilization of the common DNA markers ITS, ITS2, and matK+rbcL is unable to distinguish D. officinale from 5 closely related species of it (D. tosaense, D. shixingense, D. flexicaule, D. scoriarum and D. aduncum). Here, we compared 63 Dendrobium plastomes comprising 40 newly sequenced plastomes of the 6 species and 23 previously published plastomes. The plastomes of D. officinale and its closely related species were shown to have conserved genome structure and gene content. Comparative analyses revealed that small single copy region contained higher variation than large single copy and inverted repeat regions, which was mainly attributed to the loss/retention of ndh genes. Furthermore, the intraspecific sequence variability among different Dendrobium species was shown to be diversified, which necessitates a cautious evaluation of genetic markers specific for different Dendrobium species. By evaluating the maximum likelihood trees inferred from different datasets, we found that the complete plastome sequence dataset had the highest discriminatory power for D. officinale and its closely related species, indicating that complete plastome sequences can be used to accurately authenticate Dendrobium species.

19.
Acta Pharm Sin B ; 8(3): 466-477, 2018 May.
Article in English | MEDLINE | ID: mdl-29881686

ABSTRACT

Dendrobium species and their corresponding medicinal slices have been extensively used as traditional Chinese medicine (TCM) in many Asian countries. However, it is extremely difficult to identify Dendrobium species based on their morphological and chemical features. In this study, the plastomes of D. huoshanense were used as a model system to investigate the hypothesis that plastomic mutational hotspot regions could provide a useful single nucleotide variants (SNVs) resource for authentication studies. We surveyed the plastomes of 17 Dendrobium species, including the newly sequenced plastome of D. huoshanense. A total of 19 SNVs that could be used for the authentication of D. huoshanense were detected. On the basis of this comprehensive comparison, we identified the four most informative hotspot regions in the Dendrobium plastome that encompass ccsA to ndhF, matK to 3'trnG, rpoB to psbD, and trnT to rbcL. Furthermore, to established a simple and accurate method for the authentication of D. huoshanense and its medicinal slices, a total of 127 samples from 20 Dendrobium species including their corresponding medicinal slices (Fengdous) were used in this study. Our results suggest that D. huoshanense and its medicinal slices can be rapidly and unequivocally identified using this method that combines real-time PCR with the amplification refractory mutation system (ARMS).

20.
Int J Mol Sci ; 18(11)2017 Nov 02.
Article in English | MEDLINE | ID: mdl-29099062

ABSTRACT

The variation of GC content is a key genome feature because it is associated with fundamental elements of genome organization. However, the reason for this variation is still an open question. Different kinds of hypotheses have been proposed to explain the variation of GC content during genome evolution. However, these hypotheses have not been explicitly investigated in whole plastome sequences. Dendrobium is one of the largest genera in the orchid species. Evolutionary studies of the plastomic organization and base composition are limited in this genus. In this study, we obtained the high-quality plastome sequences of D. loddigesii and D. devonianum. The comparison results showed a nearly identical organization in Dendrobium plastomes, indicating that the plastomic organization is highly conserved in Dendrobium genus. Furthermore, the impact of three evolutionary forces-selection, mutational biases, and GC-biased gene conversion (gBGC)-on the variation of GC content in Dendrobium plastomes was evaluated. Our results revealed: (1) consistent GC content evolution trends and mutational biases in single-copy (SC) and inverted repeats (IRs) regions; and (2) that gBGC has influenced the plastome-wide GC content evolution. These results suggest that both mutational biases and gBGC affect GC content in the plastomes of Dendrobium genus.


Subject(s)
Base Composition , Dendrobium/genetics , Evolution, Molecular , Gene Conversion , Genome, Plastid , Mutation , Phylogeny , Plastids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...