Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(21): 37938-37945, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258372

ABSTRACT

We combine single-pixel imaging and homodyne detection to perform full object recovery (phase and amplitude). Our method does not require any prior information about the object or the illuminating fields. As a demonstration, we reconstruct the optical properties of several semi-transparent objects and find that the reconstructed complex transmission has a phase precision of 0.02 radians and a relative amplitude precision of 0.01.

2.
Opt Express ; 30(16): 29401-29408, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36299115

ABSTRACT

In this work, we theoretically and experimentally demonstrate the possibility to create an image of an opaque object using a few-photon thermal optical field. We utilize the quadrature-noise shadow imaging (QSI) technique that detects the changes in the quadrature-noise statistics of the probe beam after its interaction with an object. We show that such a thermal QSI scheme has an advantage over the classical differential imaging when the effect of dark counts is considered. At the same time, the easy availability of thermal sources for any wavelength makes the method practical for broad range of applications, not accessible with, e.g., quantum squeezed light. As a proof of principle, we implement this scheme by two different light sources: a pseudo-thermal beam generated by rotating ground glass (RGG) method and a thermal beam generated by four-wave mixing (FWM) method. The RGG method shows simplicity and robustness of QSI scheme while the FWM method validates theoretical signal-to-noise ratio predictions. Finally, we demonstrate low-light imaging abilities with QSI by imaging a biological specimen on a CCD camera, detecting as low as 0.03 photons on average per pixel per 1.7 µs exposure.

3.
Opt Lett ; 46(8): 1800-1803, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33857073

ABSTRACT

We investigate the prospects of using two-mode intensity squeezed twin beams, generated in Rb vapor, to improve the sensitivity of spectroscopic measurements by engaging two-photon Raman transitions. As a proof-of-principle demonstration, we recorded quantum-enhanced measurements of the Rb 5D3/2 hyperfine structure with reduced requirements for the Raman pump laser power and Rb vapor number density.

SELECTION OF CITATIONS
SEARCH DETAIL
...