Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ther Adv Neurol Disord ; 16: 17562864231193816, 2023.
Article in English | MEDLINE | ID: mdl-37719665

ABSTRACT

Multiple sclerosis (MS) is a demyelinating disease of the central nervous system characterized by inflammation, demyelination, and neurodegeneration. It mainly affects young adults, imposing a heavy burden on families and society. The epidemiology, clinical features, and management of MS are distinct among different countries. Although MS is a rare disease in China, there are 1.4 billion people in China, so the total number of MS patients is not small. Because of the lack of specific diagnostic biomarkers for MS, there is a high misdiagnosis rate in China, as in other regions. Due to different genetic backgrounds, the clinical manifestations of MS in Chinese are different from those in the West. Herein, this review aims to summarize the disease comprehensively, including clinical profile and the status of disease-modifying therapies in China based on published population-based observation and cohort studies, and also to compare with data from other countries and regions, thus providing help to develop diagnostic guideline and the novel therapeutic drugs. Meanwhile, we also discuss the problems and challenges we face, specifically for the diagnosis and treatment of MS in the middle- and low-income countries.

2.
Bull Environ Contam Toxicol ; 109(1): 30-43, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35678830

ABSTRACT

Red mud/biochar composite material (RMBC), which was applied as heavy metal passivator in this research, was prepared with red mud (the bauxite residue) and cornstalk under anoxic sintering condition. Based on the batch experiments in Pb contaminated soil, the passivating properties of several materials, including red mud (RM), biochar (BC), RMBC and phosphate-containing RMBC (PRMBC), were investigated in comparison with each other. Some interesting results are as follows: through anoxic thermal activation, a rough and porous structure of RMBC was obtained. Substances such as Fe3O4 and metal-organic complexes generated in RMBC provided effective sites for Pb passivation; and the mechanisms were speculated as the precipitation between Pb2+ and the carbonate (or hydroxide), as well as the complexation reaction between Pb and metal organic complexes through ligand bonding. The pot experiments showed the promotion effects of four passivators on the growth of red onion were in the following order: PRMBC > RMBC > BC > RM. PRMBC stabilized Pb content in soil significantly due to the formation of insoluble substances, with the minimum transfer factor and bioconcentration factor for plant growth. The evidences above implied the composite materials (PRMBC and RMBC) would be potential passivators for heavy metal-contaminated soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Charcoal/chemistry , Lead , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/analysis
3.
Bull Environ Contam Toxicol ; 109(1): 169-179, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35732838

ABSTRACT

In this study, a new red mud/fly ash composite material (RFCM) for phosphate removal was prepared by granulation and activation methods, using bauxite residue (red mud, RM) as the main raw material, adding with some fly ash and a few adhesives. The effects of different types of RM and adhesives on RFCM for phosphate removal were discussed. It was found that RFCM prepared from sintering red mud and cement waste performed better on phosphate removal than that prepared from Bayer red mud and common industrial adhesives. After calcination activated at appropriate temperature around 800-900℃, the specific surface area of RFCM increased, and new substances with hydroxyl (-OH) appeared on the surface of RFCM, which were the functional groups for phosphate removal. Mechanism of RFCM for phosphate removal was speculated as a combination of physical adsorption, chemical adsorption and chemical precipitation, which mainly depended on ligand exchange and chemical reaction. This research will provide a potential application of bauxite residue in environmental remediation.


Subject(s)
Coal Ash , Phosphates , Adsorption , Aluminum Oxide , Industrial Waste/analysis , Phosphates/chemistry
4.
Med Sci Sports Exerc ; 54(4): 566-581, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34935710

ABSTRACT

PURPOSE: Clinical studies found that regular aerobic exercise has analgesic and antianxiety effects; however, the underlying neural mechanisms remain unclear. Multiple studies have suggested that regular aerobic exercise may exert brain-protective effects by promoting the release of serotonin, which may be a pain modulator. Anterior cingulate cortex (ACC) is a key brain area for pain information processing, receiving dense serotonergic innervation. As a result, we hypothesized that exercise may increase the release of serotonin in the ACC, thus improving pain and anxiety behaviors. METHODS: Integrative methods were used, including behavioral, electrophysiological, pharmacological, biochemical, and genetic approaches, to explore the effects of regular aerobic exercise and the underlying neural mechanisms. RESULTS: Regular aerobic exercise in the form of voluntary wheel running for 30 min daily for 15 d showed significant effectiveness in relieving pain and concomitant anxiety in complete Freund's adjuvant-induced chronic inflammation pain models. c-Fos staining and multielectrode array recordings revealed alterations in neuronal activities and synaptic plasticity in the ACC. Moreover, systemic pharmacological treatment with 4-chloro-dl-phenylalanine (PCPA) to deplete endogenous serotonin and local delivery of serotonin to the ACC revealed that exercise-related serotonin release in the ACC bidirectionally modulates pain sensitization and anxiety behaviors by modulating synaptic plasticity in the ACC. Furthermore, we found that 5-HT1A and 5-HT7 receptors mediated the serotonin modulation effects under conditions of regular aerobic exercise through local infusion of a selective antagonist and shRNA in the ACC. CONCLUSIONS: Our results reveal that regular aerobic exercise can increase serotonin release and modulate synaptic plasticity in the ACC, ultimately improving pain and concomitant anxiety behaviors through the functions of the 5-HT1A and 5-HT7 receptors.


Subject(s)
Chronic Pain , Serotonin , Animals , Anxiety/therapy , Gyrus Cinguli , Humans , Inflammation/chemically induced , Mice , Motor Activity , Neuronal Plasticity/physiology
5.
ACS Appl Mater Interfaces ; 13(3): 4508-4518, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33439012

ABSTRACT

Flexible and intelligent electronics are highly demanded in wearable devices and systems, but it is still challenging to fabricate conductive textiles with good stretchability, multifunctionality, and responsiveness to multistimuli. Therefore, kinds of smart conductive fabrics with high stretchability and thermal properties, good washability, excellent shape stability, rapid responsiveness to external stimuli (e.g., electrical and photonic), and outstanding energy conversion and storage properties were designed and prepared. The nonwoven smart fabrics were fabricated by electrospinning of a solution of multiwalled carbon nanotubes (MWCNTs)/lauric acid (LA)/thermoplastic polyurethane (PU) and dip-coating conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) on the obtained nanofibers. The smart textiles showed tunable temperature and phase change enthalpy that responded to external stimuli such as electrical voltage, infrared light, and sunlight. At the same time, they realized the storage and conversion of energy reversibly with a high efficiency. The elastic fabrics could also be used as a stretchable conductor in a range of deformation. The integrative functions of the smart fabrics promise them great potential in wearable systems and intelligent protective garments.

SELECTION OF CITATIONS
SEARCH DETAIL
...