Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852726

ABSTRACT

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Gibberellins , Liposomes , Mercury , Oryza , Cytochrome P-450 Enzyme System/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...