Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Chem Biol ; 16(11): 2547-2559, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34550690

ABSTRACT

MsrPQ is a new type of methionine sulfoxide reductase (Msr) system found in bacteria. It is specifically involved in the repair of periplasmic methionine residues that are oxidized by hypochlorous acid. MsrP is a periplasmic molybdoenzyme that carries out the Msr activity, whereas MsrQ, an integral membrane-bound hemoprotein, acts as the physiological partner of MsrP to provide electrons for catalysis. Although MsrQ (YedZ) was associated since long with a protein superfamily named FRD (ferric reductase domain), including the eukaryotic NADPH oxidases and STEAP proteins, its biochemical properties are still sparsely documented. Here, we have investigated the cofactor content of the E. coli MsrQ and its mechanism of reduction by the flavin reductase Fre. We showed by electron paramagnetic resonance (EPR) spectroscopy that MsrQ contains a single highly anisotropic low-spin (HALS) b-type heme located on the periplasmic side of the membrane. We further demonstrated that MsrQ holds a flavin mononucleotide (FMN) cofactor that occupies the site where a second heme binds in other members of the FDR superfamily on the cytosolic side of the membrane. EPR spectroscopy indicates that the FMN cofactor can accommodate a radical semiquinone species. The cytosolic flavin reductase Fre was previously shown to reduce the MsrQ heme. Here, we demonstrated that Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ.


Subject(s)
Enzymes/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Membrane Proteins/metabolism , Electron Spin Resonance Spectroscopy , Flavin Mononucleotide/metabolism , Kinetics , Substrate Specificity
2.
Phys Chem Chem Phys ; 23(8): 4636-4645, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33527107

ABSTRACT

Superoxide reductases (SORs) are mononuclear non-heme iron enzymes involved in superoxide radical detoxification in some microorganisms. Their atypical active site is made of an iron atom pentacoordinated by four equatorial nitrogen atoms from histidine residues and one axial sulfur atom from a cysteinate residue, which plays a central role in catalysis. In most SORs, the residue immediately following the cysteinate ligand is an asparagine, which belongs to the second coordination sphere and is expected to have a critical influence on the properties of the active site. In this work, in order to investigate the role of this asparagine residue in the Desulfoarculus baarsii enzyme (Asn117), we carried out, in comparison with the wild-type enzyme, absorption and resonance Raman (RR) studies on a SOR mutant in which Asn117 was changed into an alanine. RR analysis was developed in order to assign the different bands using excitation in the (Cys116)-S-→ Fe3+ charge transfer band. By investigating the correlation between the (Cys116)-S-→ Fe3+ charge transfer band maximum with the frequency of each RR band in different SOR forms, we assessed the contribution of the ν(Fe-S) vibration among the different RR bands. The data showed that Asn117, by making hydrogen bond interactions with Lys74 and Tyr76, allows a rigidification of the backbone of the Cys116 ligand, as well as that of the neighboring residues Ile118 and His119. Such a structural role of Asn117 has a deep impact on the S-Fe bond. It results in a tight control of the H-bond distance between the Ile118 and His119 NH peptidic moiety with the cysteine sulfur ligand, which in turn enables fine-tuning of the S-Fe bond strength, an essential property for the SOR active site. This study illustrates the intricate roles of second coordination sphere residues to adjust the ligand to metal bond properties in the active site of metalloenzymes.


Subject(s)
Bacterial Proteins/chemistry , Cysteine/chemistry , Iron/chemistry , Oxidoreductases/chemistry , Amino Acid Sequence , Catalysis , Catalytic Domain , Hydrogen Bonding , Ligands , Mutagenesis, Site-Directed , Protein Conformation , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman , Sulfur/chemistry
3.
J Chem Theory Comput ; 13(6): 2987-3004, 2017 Jun 13.
Article in English | MEDLINE | ID: mdl-28511011

ABSTRACT

Superoxide reductase is a mononuclear iron enzyme involved in superoxide radical detoxification in some bacteria. Its catalytic mechanism is associated with the remarkable formation of a ferric hydroperoxide Fe3+-OOH intermediate, which is specifically protonated on its proximal oxygen to generate the reaction product H2O2. Here, we present a computational study of the protonation mechanism of the Fe3+-OOH intermediate, at different levels of theory. This was performed on the whole system (solvated protein) using well-tempered metadynamics at the QM/MM (B3LYP/AmberFF99SB) level. Enabled by the development of a new set of force field parameters for the active site, a conformational MM study of the Fe3+-OOH species gave insights into its solvation pattern, in addition to generating the two starting conformations for the ab initio metadynamics setup. Two different protonation mechanisms for the Fe3+-OOH intermediate have been found depending on the starting structure. Whereas a possible mechanism involves at first the protonation of the hydroperoxide ligand and then dissociation of H2O2, the most probable one starts with an unexpected dissociation of the HOO- ligand from the iron, followed by its protonation. This favored reactivity was specifically linked to the influence of both the nearby conserved lysine 48 residue and the microsolvatation on the charge distribution of the oxygens of the HOO- ligand. These data highlight the crucial role of the whole environment, solvent, and protein, to describe accurately this second protonation step in superoxide reductase. This is clearly not possible with smaller models unable to reproduce correctly the mechanistically determinant charge distribution.


Subject(s)
Ferric Compounds/metabolism , Molecular Dynamics Simulation , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Protons , Quantum Theory , Catalytic Domain , Hydrogen Bonding , Hydrogen Peroxide/chemistry , Proteobacteria/enzymology , Thermodynamics
4.
J Biol Chem ; 292(6): 2485-2494, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28028176

ABSTRACT

MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.


Subject(s)
Escherichia coli/enzymology , Methionine Sulfoxide Reductases/metabolism , NADPH Oxidases/metabolism , Amino Acid Sequence , Electron Transport , Green Fluorescent Proteins/genetics , Methionine Sulfoxide Reductases/chemistry , Methionine Sulfoxide Reductases/genetics , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Spectrophotometry, Ultraviolet , Surface Plasmon Resonance
5.
Angew Chem Int Ed Engl ; 53(23): 5926-30, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24777646

ABSTRACT

Superoxide reductase (SOR), a non-heme mononuclear iron protein that is involved in superoxide detoxification in microorganisms, can be used as an unprecedented model to study the mechanisms of O2 activation and of the formation of high-valent iron-oxo species in metalloenzymes. By using resonance Raman spectroscopy, it was shown that the mutation of two residues in the second coordination sphere of the SOR iron active site, K48 and I118, led to the formation of a high-valent iron-oxo species when the mutant proteins were reacted with H2O2. These data demonstrate that these residues in the second coordination sphere tightly control the evolution and the cleavage of the O-O bond of the ferric iron hydroperoxide intermediate that is formed in the SOR active site.


Subject(s)
Iron/chemistry , Oxidoreductases/chemistry , Spectrum Analysis, Raman/methods , Binding Sites
6.
J Biol Inorg Chem ; 18(7): 815-30, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23917995

ABSTRACT

Superoxide reductase (SOR) is a non-heme iron metalloenzyme that detoxifies superoxide radical in microorganisms. Its active site consists of an unusual non-heme Fe(2+) center in a [His4Cys1] square pyramidal pentacoordination, with the axial cysteine ligand proposed to be an essential feature in catalysis. Two NH peptide groups from isoleucine 118 and histidine 119 establish hydrogen bonds involving the sulfur ligand (Desulfoarculus baarsii SOR numbering). To investigate the catalytic role of these hydrogen bonds, the isoleucine 118 residue of the SOR from Desulfoarculus baarsii was mutated into alanine, aspartate, or serine residues. Resonance Raman spectroscopy showed that the mutations specifically induced an increase of the strength of the Fe(3+)-S(Cys) and S-Cß(Cys) bonds as well as a change in conformation of the cysteinyl side chain, which was associated with the alteration of the NH hydrogen bonding involving the sulfur ligand. The effects of the isoleucine mutations on the reactivity of SOR with O2 (•-) were investigated by pulse radiolysis. These studies showed that the mutations induced a specific increase of the pK a of the first reaction intermediate, recently proposed to be an Fe(2+)-O2 (•-) species. These data were supported by density functional theory calculations conducted on three models of the Fe(2+)-O2 (•-) intermediate, with one, two, or no hydrogen bonds involving the sulfur ligand. Our results demonstrated that the hydrogen bonds between the NH (peptide) and the cysteine ligand tightly control the rate of protonation of the Fe(2+)-O2 (•-) reaction intermediate to form an Fe(3+)-OOH species.


Subject(s)
Cysteine , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Catalytic Domain , Hydrogen Bonding , Hydrogen-Ion Concentration , Ligands , Models, Molecular , Mutagenesis, Site-Directed , Mutation , Oxidation-Reduction , Oxidoreductases/genetics , Proteobacteria/enzymology , Quantum Theory
7.
J Am Chem Soc ; 134(11): 5120-30, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22360372

ABSTRACT

Superoxide reductase is a nonheme iron metalloenzyme that detoxifies superoxide anion radicals O(2)(•-) in some microorganisms. Its catalytic mechanism was previously proposed to involve a single ferric iron (hydro)peroxo intermediate, which is protonated to form the reaction product H(2)O(2). Here, we show by pulse radiolysis that the mutation of the well-conserved lysine 48 into isoleucine in the SOR from Desulfoarculus baarsii dramatically affects its reaction with O(2)(•-). Although the first reaction intermediate and its decay are not affected by the mutation, H(2)O(2) is no longer the reaction product. In addition, in contrast to the wild-type SOR, the lysine mutant catalyzes a two-electron oxidation of an olefin into epoxide in the presence of H(2)O(2), suggesting the formation of iron-oxo intermediate species in this mutant. In agreement with the recent X-ray structures of the peroxide intermediates trapped in a SOR crystal, these data support the involvement of lysine 48 in the specific protonation of the proximal oxygen of the peroxide intermediate to generate H(2)O(2), thus avoiding formation of iron-oxo species, as is observed in cytochrome P450. In addition, we proposed that the first reaction intermediate observed by pulse radiolysis is a ferrous-iron superoxo species, in agreement with TD-DFT calculations of the absorption spectrum of this intermediate. A new reaction scheme for the catalytical mechanism of SOR with O(2)(•-) is presented in which ferrous iron-superoxo and ferric hydroperoxide species are reaction intermediates, and the lysine 48 plays a key role in the control of the evolution of iron peroxide intermediate to form H(2)O(2).


Subject(s)
Deltaproteobacteria/enzymology , Evolution, Molecular , Ferric Compounds/metabolism , Lysine/metabolism , Oxidoreductases/metabolism , Peroxides/metabolism , Protons , Ferric Compounds/chemistry , Lysine/chemistry , Oxidoreductases/chemistry , Peroxides/chemistry , Quantum Theory
8.
J Biol Inorg Chem ; 16(6): 889-98, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21590471

ABSTRACT

Superoxide reductase (SOR) is a superoxide detoxification system present in some microorganisms. Its active site consists of an unusual mononuclear iron center with an FeN4S1 coordination which catalyzes the one-electron reduction of superoxide to form hydrogen peroxide. Different classes of SORs have been described depending on the presence of an additional rubredoxin-like, desulforedoxin iron center, whose function has remained unknown until now. In this work, we investigated the mechanism of the reduction of the SOR iron active site using the NADPH:flavodoxin oxidoreductase from Escherichia coli, which was previously shown to efficiently transfer electrons to the Desulfoarculus baarsii SOR. When present, the additional rubredoxin-like iron center could function as an electronic relay between cellular reductases and the iron active site for superoxide reduction. This electron transfer was mainly intermolecular, between the rubredoxin-like iron center of one SOR and the iron active site of another SOR. These data provide the first experimental evidence for a possible role of the rubredoxin-like iron center in the superoxide detoxifying activity of SOR.


Subject(s)
Electron Transport/physiology , Electrons , Iron-Sulfur Proteins/chemistry , Iron/chemistry , Oxidoreductases/chemistry , Catalytic Domain , Models, Molecular , Mutagenesis, Site-Directed , NADP/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Conformation
9.
Biochim Biophys Acta ; 1804(4): 762-7, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19962458

ABSTRACT

Superoxide reductase SOR is an enzyme involved in superoxide detoxification in some microorganisms. Its active site consists of a non-heme ferrous center in an unusual [Fe(NHis)(4) (SCys)(1)] square pyramidal pentacoordination that efficiently reduces superoxide into hydrogen peroxide. In previous works, the reaction mechanism of the SOR from Desulfoarculus baarsii enzyme, studied by pulse radiolysis, was shown to involve the formation of two reaction intermediates T1 and T2. However, the absorption spectrum of T2 was reported with an unusual sharp band at 625 nm, very different from that reported for other SORs. In this work, we show that the sharp band at 625 nm observed by pulse radiolysis reflects the presence of photochemical processes that occurs at the level of the transient species formed during the reaction of SOR with superoxide. These processes do not change the stoichiometry of the global reaction. These data highlight remarkable photochemical properties for these reaction intermediates, not previously suspected for iron-peroxide species formed in the SOR active site. We have reinvestigated the reaction mechanism of the SOR from D. baarsii by pulse radiolysis in the absence of these photochemical processes. The T1 and T2 intermediates now appear to have absorption spectra similar to those reported for the Archaeoglobus fulgidus SOR enzymes. Although for some enzymes of the family only one transient was reported, on the whole, the reaction mechanisms of the different SORs studied so far seem very similar, which is in agreement with the strong sequence and structure homologies of their active sites.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Deltaproteobacteria/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Bacterial Proteins/genetics , Catalytic Domain , Deltaproteobacteria/genetics , Kinetics , Oxidoreductases/genetics , Photochemical Processes , Pulse Radiolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry , Superoxides/metabolism
10.
J Biol Chem ; 283(16): 10287-96, 2008 Apr 18.
Article in English | MEDLINE | ID: mdl-18245777

ABSTRACT

The ActVA-ActVB system from Streptomyces coelicolor is a two-component flavin-dependent monooxygenase involved in the antibiotic actinorhodin biosynthesis. ActVB is a NADH:flavin oxidoreductase that provides a reduced FMN to ActVA, the monooxygenase that catalyzes the hydroxylation of dihydrokalafungin, the precursor of actinorhodin. In this work, using stopped-flow spectrophotometry, we investigated the mechanism of hydroxylation of dihydrokalafungin catalyzed by ActVA and that of the reduced FMN transfer from ActVB to ActVA. Our results show that the hydroxylation mechanism proceeds with the participation of two different reaction intermediates in ActVA active site. First, a C(4a)-FMN-hydroperoxide species is formed after binding of reduced FMN to the monooxygenase and reaction with O(2). This intermediate hydroxylates the substrate and is transformed to a second reaction intermediate, a C(4a)-FMN-hydroxy species. In addition, we demonstrate that reduced FMN can be transferred efficiently from the reductase to the monooxygenase without involving any protein.protein complexes. The rate of transfer of reduced FMN from ActVB to ActVA was found to be controlled by the release of NAD(+) from ActVB and was strongly affected by NAD(+) concentration, with an IC(50) of 40 microm. This control of reduced FMN transfer by NAD(+) was associated with the formation of a strong charge.transfer complex between NAD(+) and reduced FMN in the active site of ActVB. These results suggest that, in Streptomyces coelicolor, the reductase component ActVB can act as a regulatory component of the monooxygenase activity by controlling the transfer of reduced FMN to the monooxygenase.


Subject(s)
FMN Reductase/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Mixed Function Oxygenases/metabolism , Streptomyces coelicolor/metabolism , Binding Sites , Hydrogen-Ion Concentration , Kinetics , Models, Biological , Models, Chemical , Oxygen/chemistry , Oxygen/metabolism , Protein Binding , Spectrophotometry/methods , Substrate Specificity , Temperature , Time Factors
11.
J Biol Chem ; 282(30): 22207-16, 2007 Jul 27.
Article in English | MEDLINE | ID: mdl-17545670

ABSTRACT

Superoxide reductase is a novel class of non-heme iron proteins that catalyzes the one-electron reduction of O(2)(.) to H(2)O(2), providing an antioxidant defense in some bacteria. Its active site consists of an unusual non-heme Fe(2+) center in a [His(4) Cys(1)] square pyramidal pentacoordination. In this class of enzyme, the cysteine axial ligand has been hypothesized to be an essential feature in the reactivity of the enzyme. Previous Fourier transform infrared spectroscopy studies on the enzyme from Desulfoarculus baarsii revealed that a protonated carboxylate group, proposed to be the side chain of Glu(114), is in interaction with the cysteine ligand. In this work, using pulse radiolysis, Fourier transform infrared, and resonance Raman spectroscopies, we have investigated to what extent the presence of this Glu(114) carboxylic lateral chain affects the strength of the S-Fe bond and the reaction of the iron active site with superoxide. The E114A mutant shows significantly modified pulse radiolysis kinetics for the protonation process of the first reaction intermediate. Resonance Raman spectroscopy demonstrates that the E114A mutation results in both a strengthening of the S-Fe bond and an increase in the extent of freeze-trapping of a Fe-peroxo species after treatment with H(2)O(2) by a specific strengthening of the Fe-O bond. A fine tuning of the strength of the S-Fe bond by the presence of Glu(114) appears to be an essential factor for both the strength of the Fe-O bond and the pK(a) value of the Fe(3+)-peroxo intermediate species to form the reaction product H(2)O(2).


Subject(s)
Cysteine , Desulfovibrio/enzymology , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Amino Acid Substitution , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Glutamic Acid , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Molecular Sequence Data , Mutagenesis, Site-Directed , Oxidoreductases/genetics , Polymorphism, Single Nucleotide , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
12.
Science ; 316(5823): 449-53, 2007 Apr 20.
Article in English | MEDLINE | ID: mdl-17446401

ABSTRACT

Iron-peroxide intermediates are central in the reaction cycle of many iron-containing biomolecules. We trapped iron(III)-(hydro)peroxo species in crystals of superoxide reductase (SOR), a nonheme mononuclear iron enzyme that scavenges superoxide radicals. X-ray diffraction data at 1.95 angstrom resolution and Raman spectra recorded in crystallo revealed iron-(hydro)peroxo intermediates with the (hydro)peroxo group bound end-on. The dynamic SOR active site promotes the formation of transient hydrogen bond networks, which presumably assist the cleavage of the iron-oxygen bond in order to release the reaction product, hydrogen peroxide.


Subject(s)
Deltaproteobacteria/enzymology , Hydrogen Peroxide/chemistry , Iron/chemistry , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Peroxides/chemistry , Crystallization , Crystallography, X-Ray , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Hydrogen Bonding , Hydrogen Peroxide/metabolism , Ligands , Models, Chemical , Models, Molecular , Oxidation-Reduction , Oxygen/chemistry , Protein Conformation , Protons , Spectrum Analysis, Raman
13.
Proc Natl Acad Sci U S A ; 103(40): 14750-5, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-17001016

ABSTRACT

The superoxide radical O(2)(-.) is a toxic by-product of oxygen metabolism. Two O(2)(-.) detoxifying enzymes have been described so far, superoxide dismutase and superoxide reductase (SOR), both forming H2O2 as a reaction product. Recently, the SOR active site, a ferrous iron in a [Fe(2+) (N-His)(4) (S-Cys)] pentacoordination, was shown to have the ability to form a complex with the organometallic compound ferrocyanide. Here, we have investigated in detail the reactivity of the SOR-ferrocyanide complex with O(2)(-.) by pulse and gamma-ray radiolysis, infrared, and UV-visible spectroscopies. The complex reacts very efficiently with O(2)(-.). However, the presence of the ferrocyanide adduct markedly modifies the reaction mechanism of SOR, with the formation of transient intermediates different from those observed for SOR alone. A one-electron redox chemistry appears to be carried out by the ferrocyanide moiety of the complex, whereas the SOR iron site remains in the reduced state. Surprisingly, the toxic H2O2 species is no longer the reaction product. Accordingly, in vivo experiments showed that formation of the SOR-ferrocyanide complex increased the antioxidant capabilities of SOR expressed in an Escherichia coli sodA sodB recA mutant strain. Altogether, these data describe an unprecedented O(2)(-.) detoxification activity, catalyzed by the SOR-ferrocyanide complex, which does not conduct to the production of the toxic H2O2 species.


Subject(s)
Antioxidants/metabolism , Deltaproteobacteria/enzymology , Ferrocyanides/metabolism , Hydrogen Peroxide/metabolism , Oxidoreductases/metabolism , Superoxides/metabolism , Aerobiosis , Binding Sites , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Gamma Rays , Hydrogen-Ion Concentration , Models, Biological , Mutation/genetics , Oxidative Stress/physiology , Pulse Radiolysis , Solutions , Spectroscopy, Fourier Transform Infrared
14.
Biophys Chem ; 119(1): 38-48, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16084640

ABSTRACT

Superoxide reductases (SORs) are superoxide (O2-)-detoxifying enzymes that catalyse the reduction of O2- into hydrogen peroxide. Three different classes of SOR have been reported on the basis of the presence or not of an additional N-terminal domain. They all share a similar active site, with an unusual non-heme Fe atom coordinated by four equatorial histidines and one axial cysteine residues. Crucial catalytic reaction intermediates of SOR are purported to be Fe(3+)-(hydro)peroxo species. Using resonance Raman spectroscopy, we compared the vibrational properties of the Fe3+ active site of two different classes of SOR, from Desulfoarculus baarsii and Treponema pallidum, along with their ferrocyanide and their peroxo complexes. In both species, rapid treatment with H2O2 results in the stabilization of a side-on high spin Fe(3+)-(eta(2)-OO) peroxo species. Comparison of these two peroxo species reveals significant differences in vibrational frequencies and bond strengths of the Fe-O2 (weaker) and O-O (stronger) bonds for the T. pallidum enzyme. Thus, the two peroxo adducts in these two SORs have different stabilities which are also seen to be correlated with differences in the Fe-S coordination strengths as gauged by the Fe-S vibrational frequencies. This was interpreted from structural variations in the two active sites, resulting in differences in the electron donating properties of the trans cysteine ligand. Our results suggest that the structural differences observed in the active site of different classes of SORs should be a determining factor for the rate of release of the iron-peroxo intermediate during enzymatic turnover.


Subject(s)
Desulfovibrio/enzymology , Ferric Compounds/metabolism , Iron/chemistry , Oxidoreductases/metabolism , Treponema pallidum/enzymology , Binding Sites , Catalysis , Cations , Cysteine/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/metabolism , Ligands , Spectrum Analysis, Raman , Sulfur/chemistry , Temperature
15.
J Biol Chem ; 281(1): 27-35, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16267053

ABSTRACT

The ActVA-ActVB system from Streptomyces coelicolor isatwo-component flavin-dependent monooxygenase that belongs to an emerging class of enzymes involved in various oxidation reactions in microorganisms. The ActVB component is a NADH:flavin oxidoreductase that provides a reduced FMN to the second component, ActVA the proper monooxygenase. In this work, we demonstrate that the ActVA-ActVB system catalyzes the aromatic monohydroxylation of dihydrokalafungin by molecular oxygen. In the presence of reduced FMN and molecular oxygen, the ActVA active site accommodates and stabilizes an electrophilic flavin FMN-OOH hydroperoxide intermediate species as the oxidant. Surprisingly, we demonstrate that the quinone form of dihydrokalafungin is not oxidized by the ActVA-ActVB system, whereas the corresponding hydroquinone is an excellent substrate. The enantiomer of dihydrokalafungin, nanaomycin A, as well as the enantiomer of kalafungin, nanaomycin D, are also substrates in their hydroquinone forms. The previously postulated product of the ActVA-ActVB system, the antibiotic actinorhodin, was not found to be formed during the oxidation reaction.


Subject(s)
FMN Reductase/metabolism , Flavins/metabolism , Mixed Function Oxygenases/metabolism , Streptomyces coelicolor/enzymology , Anthraquinones/chemistry , Anthraquinones/metabolism , Hydrogen Peroxide/metabolism , Hydroquinones/metabolism , Hydroxylation , Naphthoquinones/chemistry , Naphthoquinones/metabolism , Oxidants/metabolism , Quinones/chemistry , Quinones/metabolism , Substrate Specificity
16.
J Am Chem Soc ; 127(47): 16436-41, 2005 Nov 30.
Article in English | MEDLINE | ID: mdl-16305229

ABSTRACT

Superoxide reductase (SOR) catalyzes the reduction of O2*- to H2O2. Its active site consists of a non-heme Fe2+ center in an unusual square-pyramidal [His4 Cys] coordination. Like many SORs, the electronic absorption band corresponding to the oxidized active site of the SOR from Desulfoarculus baarsii exhibits a pH-dependent alkaline transition changing from ca. 644 to 560 nm as the pH increases and with an apparent pKa of 9.0. Variants in which the conserved amino acids glutamate 47 and lysine 48 were replaced by the neutral residues alanine (E47A) and isoleucine (K48I), respectively, exhibited the same alkaline transition but at lower apparent pKa values of 6.7 and 7.6, respectively. Previous work [Nivière, V.; Asso, M.; Weill, C. O.; Lombard, M.; Guigliarelli, B.; Favaudon, V.; Houée-Levin, C. Biochemistry 2004, 43, 808-818] has shown that this alkaline transition is associated with the protonation/deprotonation of an unidentified base, B-, which is neither E47 nor K48. In this work, we show by resonance Raman spectroscopy that at basic pH a high-spin Fe3+-OH species is formed at the active site. The presence of the HO- ligand was directly associated with an absorption band maximum at 560 nm, whereas upon protonation, the band shifts to 644 nm. With respect to our previous work, B- can be identified with this high-spin Fe3+-OH species, which upon protonation results in a water molecule at the active site. Implications for the SOR catalytic cycle are proposed.


Subject(s)
Deltaproteobacteria/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Oxidoreductases/chemistry , Alanine/chemistry , Binding Sites , Deltaproteobacteria/enzymology , Glutamic Acid/chemistry , Hydrogen-Ion Concentration , Isoleucine/chemistry , Ligands , Lysine/chemistry , Molecular Structure , Oxidation-Reduction , Oxygen Isotopes , Spectrum Analysis, Raman
17.
FEBS Lett ; 579(13): 2817-20, 2005 May 23.
Article in English | MEDLINE | ID: mdl-15878552

ABSTRACT

The flavin reductase ActVB is involved in the last step of actinorhodin biosynthesis in Streptomyces coelicolor. Although ActVB can be isolated with some FMN bound, this form was not involved in the flavin reductase activity. By studying the ferric reductase activity of ActVB, we show that its FMN-bound form exhibits a proper enzymatic activity of reduction of iron complexes by NADH. This shows that ActVB active site exhibits a dual property with regard to the FMN. It can use it as a substrate that goes in and off the active site or as a cofactor to provide an electron transferase activity to the polypeptide.


Subject(s)
Bacterial Proteins/metabolism , Oxidoreductases/metabolism , Streptomyces coelicolor/enzymology , Binding Sites
18.
Structure ; 12(9): 1729-40, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15341736

ABSTRACT

Some sulfate-reducing and microaerophilic bacteria rely on the enzyme superoxide reductase (SOR) to eliminate the toxic superoxide anion radical (O2*-). SOR catalyses the one-electron reduction of O2*- to hydrogen peroxide at a nonheme ferrous iron center. The structures of Desulfoarculus baarsii SOR (mutant E47A) alone and in complex with ferrocyanide were solved to 1.15 and 1.7 A resolution, respectively. The latter structure, the first ever reported of a complex between ferrocyanide and a protein, reveals that this organo-metallic compound entirely plugs the SOR active site, coordinating the active iron through a bent cyano bridge. The subtle structural differences between the mixed-valence and the fully reduced SOR-ferrocyanide adducts were investigated by taking advantage of the photoelectrons induced by X-rays. The results reveal that photo-reduction from Fe(III) to Fe(II) of the iron center, a very rapid process under a powerful synchrotron beam, induces an expansion of the SOR active site.


Subject(s)
Bacterial Proteins/chemistry , Ferrocyanides/chemistry , Light , Oxidoreductases/chemistry , Protein Structure, Tertiary , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Crystallography, X-Ray , Desulfovibrio/enzymology , Ferrocyanides/metabolism , Macromolecular Substances , Models, Molecular , Mutation , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Binding , Superoxides/chemistry , X-Rays
19.
J Biol Chem ; 279(43): 44362-9, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15297451

ABSTRACT

The two-component flavin-dependent monooxygenases belong to an emerging class of enzymes involved in oxidation reactions in a number of metabolic and biosynthetic pathways in microorganisms. One component is a NAD(P)H:flavin oxidoreductase, which provides a reduced flavin to the second component, the proper monooxygenase. There, the reduced flavin activates molecular oxygen for substrate oxidation. Here, we study the flavin reductase ActVB and ActVA-ORF5 gene product, both reported to be involved in the last step of biosynthesis of the natural antibiotic actinorhodin in Streptomyces coelicolor. For the first time we show that ActVA-ORF5 is a FMN-dependent monooxygenase that together with the help of the flavin reductase ActVB catalyzes the oxidation reaction. The mechanism of the transfer of reduced FMN between ActVB and ActVA-ORF5 has been investigated. Dissociation constant values for oxidized and reduced flavin (FMNox and FMNred) with regard to ActVB and ActVA-ORF5 have been determined. The data clearly demonstrate a thermodynamic transfer of FMNred from ActVB to ActVA-ORF5 without involving a particular interaction between the two protein components. In full agreement with these data, we propose a reaction mechanism in which FMNox binds to ActVB, where it is reduced, and the resulting FMNred moves to ActVA-ORF5, where it reacts with O2 to generate a flavinperoxide intermediate. A direct spectroscopic evidence for the formation of such species within ActVA-ORF5 is reported.


Subject(s)
Anthraquinones/metabolism , FMN Reductase/chemistry , Oxygen/chemistry , Streptomyces/enzymology , Anthraquinones/chemistry , Dose-Response Relationship, Drug , Escherichia coli/metabolism , FMN Reductase/metabolism , Flavins/chemistry , Hydrogen-Ion Concentration , Kinetics , Light , Mixed Function Oxygenases/chemistry , Models, Chemical , Models, Statistical , Open Reading Frames , Oxygen/metabolism , Plasmids/metabolism , Spectrophotometry , Streptomyces/metabolism , Thermodynamics , Ultraviolet Rays
20.
Biochemistry ; 43(27): 8815-25, 2004 Jul 13.
Article in English | MEDLINE | ID: mdl-15236590

ABSTRACT

Superoxide reductase (SOR) is an Fe protein that catalyzes the reduction of superoxide to give H(2)O(2). Recently, the mutation of the Glu47 residue into alanine (E47A) in the active site of SOR from Desulfoarculus baarsii has allowed the stabilization of an iron-peroxo species when quickly reacted with H(2)O(2) [Mathé et al. (2002) J. Am. Chem. Soc. 124, 4966-4967]. To further investigate this non-heme peroxo-iron species, we have carried out a Mössbauer study of the (57)Fe-enriched E47A SOR from D. baarsii reacted quickly with H(2)O(2). Considering the Mössbauer data, we conclude, in conjunction with the other spectroscopic data available and with the results of density functional calculations on related models, that this species corresponds to a high-spin side-on peroxo-Fe(3+) complex. This is one of the first examples of such a species in a biological system for which Mössbauer parameters are now available: delta(/Fe) = 0.54 (1) mm/s, DeltaE(Q) = -0.80 (5) mm/s, and the asymmetry parameter eta = 0.60 (5) mm/s. The Mössbauer and spin Hamiltonian parameters have been evaluated on a model from the side-on peroxo complex (model 2) issued from the oxidized iron center in SOR from Pyrococcus furiosus, for which structural data are available in the literature [Yeh et al. (2000) Biochemistry 39, 2499-2508]. For comparison, similar calculations have been carried out on a model derived from 2 (model 3), where the [CH(3)-S](1)(-) group has been replaced by the neutral [NH(3)](0) group [Neese and Solomon (1998) J. Am. Chem. Soc. 120, 12829-12848]. Both models 2 and 3 contain a formally high-spin Fe(3+) ion (i.e., with empty minority spin orbitals). We found, however, a significant fraction ( approximately 0.6 for 2, approximately 0.8 for 3) of spin (equivalently charge) spread over two occupied (minority spin) orbitals. The quadrupole splitting value for 2 is found to be negative and matches quite well the experimental value. The computed quadrupole tensors are rhombic in the case of 2 and axial in the case of 3. This difference originates directly from the presence of the thiolate ligand in 2. A correlation between experimental isomer shifts for Fe(3+) mononuclear complexes with computed electron densities at the iron nucleus has been built and used to evaluate the isomer shift values for 2 and 3 (0.56 and 0.63 mm/s, respectively). A significant increase of isomer shift value is found upon going from a methylthiolate to a nitrogen ligand for the Fe(3+) ion, consistent with covalency effects due to the presence of the axial thiolate ligand. Considering that the isomer shift value for 3 is likely to be in the 0.61-0.65 mm/s range [Horner et al. (2002) Eur. J. Inorg. Chem., 3278-3283], the isomer shift value for a high-spin eta(2)-O(2) Fe(3+) complex with an axial thiolate group can be estimated to be in the 0.54-0.58 mm/s range. The occurrence of a side-on peroxo intermediate in SOR is discussed in relation to the recent data published for a side-on peroxo-Fe(3+) species in another biological system [Karlsson et al. (2003) Science 299, 1039-1042].


Subject(s)
Deltaproteobacteria/enzymology , Iron/chemistry , Iron/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Binding Sites , Calibration , Computer Simulation , Dithionite/metabolism , Glutamic Acid/genetics , Glutamic Acid/metabolism , Hydrogen Peroxide/pharmacology , Ligands , Models, Chemical , Molecular Structure , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...