Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 43(14): 3273-3276, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-30004484

ABSTRACT

In this Letter, a visualization method of a fluid flow through temperature control is proposed. The proposed method enables us to visualize an invisible fluid flow by controlling the temperature so that its visibility can be easily adjusted. Such ability of adjusting appearance is effective for visualizing the phenomena consisting of multiple physical processes. In order to verify the validity of the proposed method, the measurement experiment of visualization of both flow and sound in air using parallel phase-shifting interferometry, which is a similar condition to the previous research [Opt. Lett.43, 991 (2018)OPLEDP0146-959210.1364/OL.43.000991], was conducted.

2.
Opt Lett ; 43(5): 991-994, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29489763

ABSTRACT

In this Letter, simultaneous imaging of flow and sound by using parallel phase-shifting interferometry and a high-speed polarization camera is proposed. The proposed method enables the visualization of flow and sound simultaneously by using the following two factors: (i) injection of the gas, whose density is different from the surrounding air, makes the flow visible to interferometry, and (ii) time-directional processing is applied for extracting the small-amplitude sound wave from the high-speed flow video. An experiment with a frame rate of 42,000 frames per second for visualizing the flow and sound emitted from a whistle was conducted. By applying time-directional processing to the obtained video, both flow emitted from the slit of the whistle and a spherical sound wave of 8.7 kHz were successively captured.

3.
Opt Express ; 24(12): 12922-32, 2016 Jun 13.
Article in English | MEDLINE | ID: mdl-27410311

ABSTRACT

Sound-field imaging, the visualization of spatial and temporal distribution of acoustical properties such as sound pressure, is useful for understanding acoustical phenomena. This study investigated the use of parallel phase-shifting interferometry (PPSI) with a high-speed polarization camera for imaging a sound field, particularly high-speed imaging of propagating sound waves. The experimental results showed that the instantaneous sound field, which was generated by ultrasonic transducers driven by a pure tone of 40 kHz, was quantitatively imaged. Hence, PPSI can be used in acoustical applications requiring spatial information of sound pressure.

SELECTION OF CITATIONS
SEARCH DETAIL
...