Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cloning Stem Cells ; 7(4): 255-64, 2005.
Article in English | MEDLINE | ID: mdl-16390261

ABSTRACT

In two experimental series of transplantation of embryonic cell nuclei into nonenucleated unfertilized eggs in medaka (Oryzias latipes), fertile and diploid nuclear transplants were successfully generated. In the first experiment, nuclei from blastula cells of a medaka stock with the wild-type body color were transplanted into 1722 eggs from the orange-red variety. Of 26 adult nuclear transplants with the wild-type body color, 22 were, as expected, triploid and sterile, but the other four were fertile. Three of the four were diploid, and the last one was tetraploid. They transmitted the wild-type body color to the F1 and F2 progenies in a Mendelian fashion. In the second experiment, cell nuclei from four-somite-stage embryos of the orangered variety carrying the green fluorescent protein (GFP) transgene were transplanted into 1688 recipients of the same strain. Three adult nuclear transplants expressing GFP were obtained. Two of them were triploid and sterile, but the remaining one was fertile and diploid. The transgene of the donor nuclei was transmitted to the F(1) and F(2) offspring in a Mendelian fashion. These observations that diploid and fertile nuclear transplants could be obtained without enucleation of the recipient eggs may have important implications for future nuclear transplantation in medaka.


Subject(s)
Blastula/physiology , Cloning, Organism , Diploidy , Fertility/physiology , Nuclear Transfer Techniques , Oocytes/physiology , Oryzias/embryology , Animals , Animals, Genetically Modified , Blastula/cytology , Cell Nucleus/physiology , Cloning, Organism/methods , Female , Male , Oocytes/cytology , Somites/cytology , Somites/physiology
2.
Biol Reprod ; 71(5): 1560-7, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15229139

ABSTRACT

Mouse parthenotes result in embryonic death before 10 days of gestation, but parthenogenetic embryos (ng/fg PE) that contain haploid sets of genomes from nongrowing (ng) oocytes derived from newborn fetuses and fully grown (fg) oocytes derived from adults can develop into 13.5-day-old fetuses. This prolonged development is due to a lack of genomic imprinting in ng oocytes. Here, we show maternal genomes of oocytes derived from ng/fg PE are competent to support normal development. After 28 days of culture, the ovaries from ng/fg PE grew as well as the controls, forming vesicular follicles with follicular antrums. The oocytes collected from the developed follicles were the same size as those of the controls. To determine whether maternal primary imprinting had been established in the oocytes derived from ng/fg PE, we examined the DNA methylation status in differentially methylated regions of three imprinted genes, Igf2r, Lit1, and H19. The results showed that maternal-specific modifications were imposed in the oocytes derived from ng/fg PE. Further, to assess nuclear competence to support development, we constructed matured oocytes containing a haploid genome derived from ng/fg PE oocytes by serial nuclear transfer. After in vitro fertilization and culture and embryo transplantation into recipients, two live pups were obtained. One developed normally to a fertile adult. These results revealed that oocytes derived from ng/fg PE can be normally imprinted during oogenesis and acquire competence to participate in development as female genomes.


Subject(s)
Cell Nucleus/physiology , Mice/embryology , Oocytes/physiology , Parthenogenesis/physiology , Animals , DNA Methylation , Embryonic Development/physiology , Female , Fertilization in Vitro , Genomic Imprinting , Mice, Inbred Strains , RNA, Long Noncoding , RNA, Untranslated/genetics , Receptor, IGF Type 2/genetics , Tissue Culture Techniques
3.
Mech Dev ; 121(7-8): 647-58, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210174

ABSTRACT

A large-scale mutagenesis screen was performed in Medaka to identify genes acting in diverse developmental processes. Mutations were identified in homozygous F3 progeny derived from ENU-treated founder males. In addition to the morphological inspection of live embryos, other approaches were used to detect abnormalities in organogenesis and in specific cellular processes, including germ cell migration, nerve tract formation, sensory organ differentiation and DNA repair. Among 2031 embryonic lethal mutations identified, 312 causing defects in organogenesis were selected for further analyses. From these, 126 mutations were characterized genetically and assigned to 105 genes. The similarity of the development of Medaka and zebrafish facilitated the comparison of mutant phenotypes, which indicated that many mutations in Medaka cause unique phenotypes so far unrecorded in zebrafish. Even when mutations of the two fish species cause a similar phenotype such as one-eyed-pinhead or parachute, more genes were found in Medaka than in zebrafish that produced the same phenotype when mutated. These observations suggest that many Medaka mutants represent new genes and, therefore, are important complements to the collection of zebrafish mutants that have proven so valuable for exploring genomic function in development.


Subject(s)
Mutation , Organogenesis/genetics , Oryzias/genetics , Animals , Eye/embryology , Germ Cells , Oryzias/embryology , Phenotype , Prosencephalon/embryology , Radiation Tolerance/genetics , Research Design , Somites , Thymus Gland/embryology
4.
Mech Dev ; 121(7-8): 659-71, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210175

ABSTRACT

The metameric structure of the vertebrate trunk is generated by repeated formation of somites from the unsegmented presomitic mesoderm (PSM). We report the initial characterization of nine different mutants affecting segmentation that were isolated in a large-scale mutagenesis screen in Medaka (Oryzias latipes). Four mutants were identified that show a complete or partial absence of somites or somite boundaries. In addition, five mutations were found that cause fused somites or somites with irregular sizes and shapes. In situ hybridization analysis using specific markers involved in the segmentation clock and antero-posterior (A-P) polarity of somites revealed that the nine mutants can be compiled into two groups. In group 1, mutants exhibit defects in tailbud formation and PSM prepatterning, whereas A-P identity in the somites is defective in group 2 mutants. Three mutants (planlos, pll; schnelles ende, sne; samidare, sam) have characteristic phenotypes that are similar to those in zebrafish mutants affected in the Delta/Notch signaling pathway. The majority of mutants, however, exhibit somitic phenotypes distinct from those found in zebrafish, such as individually fused somites and irregular somite sizes. Thus, these Medaka mutants can be expected to provide clues to uncovering novel components essential for somitogenesis.


Subject(s)
Oryzias/embryology , Oryzias/genetics , Somites , Animals , Body Patterning/genetics , Mutation
5.
Mech Dev ; 121(7-8): 673-85, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210176

ABSTRACT

The forebrain, consisting of the telencephalon and diencephalon, is essential for processing sensory information. To genetically dissect formation of the forebrain in vertebrates, we carried out a systematic screen for mutations affecting morphogenesis of the forebrain in Medaka. Thirty-three mutations defining 25 genes affecting the morphological development of the forebrain were grouped into two classes. Class 1 mutants commonly showing a decrease in forebrain size, were further divided into subclasses 1A to 1D. Class 1A mutation (1 gene) caused an early defect evidenced by the lack of bf1 expression, Class 1B mutations (6 genes) patterning defects revealed by the aberrant expression of regional marker genes, Class 1C mutation (1 gene) a defect in a later stage, and Class 1D (3 genes) a midline defect analogous to the zebrafish one-eyed pinhead mutation. Class 2 mutations caused morphological abnormalities in the forebrain without considerably affecting its size, Class 2A mutations (6 genes) caused abnormalities in the development of the ventricle, Class 2B mutations (2 genes) severely affected the anterior commissure, and Class 2C (6 genes) mutations resulted in a unique forebrain morphology. Many of these mutants showed the compromised sonic hedgehog expression in the zona-limitans-intrathalamica (zli), arguing for the importance of this structure as a secondary signaling center. These mutants should provide important clues to the elucidation of the molecular mechanisms underlying forebrain development, and shed new light on phylogenically conserved and divergent functions in the developmental process.


Subject(s)
Oryzias/embryology , Oryzias/genetics , Prosencephalon/embryology , Animals , Mutation , Phenotype , Prosencephalon/abnormalities
6.
Mech Dev ; 121(7-8): 703-14, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210178

ABSTRACT

In a large scale mutagenesis screen of Medaka we identified 60 recessive zygotic mutations that affect retina development. Based on the onset and type of phenotypic abnormalities, the mutants were grouped into five categories: the first includes 11 mutants that are affected in neural plate and optic vesicle formation. The second group comprises 15 mutants that are impaired in optic vesicle growth. The third group includes 18 mutants that are affected in optic cup development. The fourth group contains 13 mutants with defects in retinal differentiation. 12 of these have smaller eyes, whereas one mutation results in enlarged eyes. The fifth group consists of three mutants with defects in retinal pigmentation. The collection of mutants will be used to address the molecular genetic mechanisms underlying vertebrate eye formation.


Subject(s)
Oryzias/embryology , Oryzias/genetics , Retina/embryology , Animals , Cell Differentiation/genetics , Genes, Recessive , Pigmentation/genetics , Retina/cytology
7.
Mech Dev ; 121(7-8): 715-28, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210179

ABSTRACT

We screened for mutations affecting retinotectal axonal projection in Medaka, Oryzias latipes. In wild-type Medaka embryos, all the axons of retinal ganglion cells (RGCs) project to the contralateral tectum, such that the topological relationship of the retinal field is maintained. We labeled RGC axons using DiI/DiO at the nasodorsal and temporoventral positions of the retina, and screened for mutations affecting the pattern of stereotypic projections to the tectum. By screening 184 mutagenized haploid genomes, seven mutations in five genes causing defects in axonal pathfinding were identified, whereas mutations affecting the topographic projection of RGC axons were not found. The mutants were grouped into two classes according to their phenotypes. In mutants of Class I, a subpopulation of the RGC axons branched out either immediately after leaving the eye or after reaching the midline, and this axonal subpopulation projected to the ipsilateral tectum. In mutants of Class II, subpopulations of RGC axons branched out after crossing the midline and projected aberrantly. These mutants will provide clues to understanding the functions of genes essential for axonal pathfinding, which may be conserved or partly divergent among vertebrates.


Subject(s)
Axons , Mutation , Oryzias/embryology , Oryzias/genetics , Animals , Eye/embryology , Optic Chiasm/embryology , Optic Nerve/abnormalities , Optic Nerve/embryology , Superior Colliculi/embryology , Zebrafish/embryology , Zebrafish/genetics
8.
Mech Dev ; 121(7-8): 729-38, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210180

ABSTRACT

We performed a systematic screen for mutations affecting the trajectory of axons visualized by immunohistochemical staining of Medaka embryos with anti-acetylated tubulin antibody. Among the mutations identified, yanagi (yan) and kazura (kaz) mutations caused specific defects in projection of the posterior lateral line (PLL) nerve. In yan and kaz mutant embryos, the PLL nerve main bundle was misrouted ventrally and dorsally or anteriorly. Medaka semaphorin3A, sdf1, and cxcr4 cDNA fragments were cloned to allow analysis of these mutants. There were no changes in semaphorin3A or sdf1 expression in mutant embryos, suggesting that the tissues expressing semaphorin3A or sdf1 that are involved in PLL nerve guidance are present in these mutant embryos. Double staining revealed that the mislocated PLL primordium and growth cone of the ectopically projected PLL nerve were always colocalized in both yan and kaz mutant embryos, suggesting that migration of PLL primordia and PLL nerve growth cones are not uncoupled in these mutants. Although homozygous yan larvae showed incomplete migration of the PLL primordium along the anteroposterior axis, ventral proneuromast migration was complete, suggesting that ventral migration of the proneuromast does not require the signaling affected in yan mutants. In addition to the PLL system, the distribution of primordial germ cells (PGCs) was also affected in both yan and kaz mutant embryos, indicating that yan and kaz genes are required for the migration of both PLL primordia and PGCs. Genetic linkage analysis indicated that kaz is linked to cxcr4, but yan is not linked to sdf1 or cxcr4. These mutations will provide genetic clues to investigate the molecular mechanism underlying formation of the PLL system.


Subject(s)
Mutation , Oryzias/embryology , Oryzias/genetics , Sensory Receptor Cells/embryology , Animals , Peripheral Nerves/embryology
9.
Mech Dev ; 121(7-8): 779-89, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210185

ABSTRACT

The thymus is an organ for T lymphocyte maturation and is indispensable for the establishment of a highly developed immune system in vertebrates. In order to genetically dissect thymus organogenesis, we carried out a large-scale mutagenesis screening for Medaka mutations affecting recombination activating gene 1 (rag1) expression in the developing thymus. We identified 24 mutations, defining at least 13 genes, which led to a marked reduction of rag1 expression in the thymus. As thymus development depends on pharyngeal arches, we classified those mutations into three classes according to the defects in the pharyngeal arches. Class 1 mutants had no or slight morphological abnormalities in the pharyngeal arches, implying that the mutations may include defects in such thymus-specific events as lymphocyte development and thymic epithelial cell maturation. Class 2 mutants had abnormally shaped pharyngeal arches. Class 3 mutants showed severely attenuated pharyngeal arch development. In Class 2 and Class 3 mutants, the defects in thymus development may be due to abnormal pharyngeal arch development. Those mutations are expected to be useful for identifying the molecular mechanisms underlying thymus organogenesis.


Subject(s)
Mutation , Oryzias/embryology , Oryzias/genetics , Thymus Gland/embryology , Animals , Branchial Region/abnormalities , Branchial Region/embryology , Gene Expression/physiology , Gene Expression Regulation, Developmental/physiology , Genes, RAG-1/physiology , Oryzias/abnormalities , Thymus Gland/abnormalities , Thymus Gland/metabolism
10.
Mech Dev ; 121(7-8): 791-802, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210186

ABSTRACT

We report here mutations affecting various aspects of liver development and function identified by multiple assays in a systematic mutagenesis screen in Medaka. The 22 identified recessive mutations assigned to 19 complementation groups fell into five phenotypic groups. Group 1, showing defective liver morphogenesis, comprises mutations in four genes, which may be involved in the regulation of growth or patterning of the gut endoderm. Group 2 comprises mutations in three genes that affect the laterality of the liver; in kendama mutants of this group, the laterality of the heart and liver is uncoupled and randomized. Group 3 includes mutations in three genes altering bile color, indicative of defects in hemoglobin-bilirubin metabolism and globin synthesis. Group 4 consists of mutations in three genes, characterized by a decrease in the accumulation of fluorescent metabolite of a phospholipase A(2) substrate, PED6, in the gall bladder. Lipid metabolism or the transport of lipid metabolites may be affected by these mutations. Mutations in Groups 3 and 4 may provide animal models for relevant human diseases. Group 5 mutations in six genes affect the formation of endoderm, endodermal rods and hepatic bud from which the liver develops. These Medaka mutations, identified by morphological and metabolite marker screens, should provide clues to understanding molecular mechanisms underlying formation of a functional liver.


Subject(s)
Liver/embryology , Mutation , Oryzias/embryology , Oryzias/genetics , Animals , Body Patterning/genetics , Endoderm , Gallbladder/metabolism , In Situ Hybridization , Lipid Metabolism , Liver/abnormalities , Liver/physiology , Oryzias/physiology
11.
Mech Dev ; 121(7-8): 817-28, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210188

ABSTRACT

The development of germ cells has been intensively studied in Medaka (Oryzias latipes). We have undertaken a large-scale screen to identify mutations affecting the development of primordial germ cells (PGCs) in Medaka. Embryos derived from mutagenized founder fish were screened for an abnormal distribution or number of PGCs at embryonic stage 27 by RNA in situ hybridization for the Medaka vasa homologue (olvas). At this stage, PGCs coalesce into two bilateral vasa-expressing foci in the ventrolateral regions of the trunk after their migration and group organization. Nineteen mutations were identified from a screen corresponding to 450 mutagenized haploid genomes. Eleven of the mutations caused altered PGC distribution. Most of these alterations were associated with morphological abnormalities and could be grouped into four phenotypic classes: Class 1, PGCs dispersed into bilateral lines; Class 2, PGCs dispersed in a region more medial than that in Class 1; Class 3, PGCs scattered laterally and over the yolk sac area; and Class 4, PGCs clustered in a single median focus. Eight mutations caused a decrease in the number of PGCs. This decrease was observed in the offspring of heterozygous mothers, indicating the contribution of a maternal factor in determining PGC abundance. Taken together, these mutations should prove useful in identifying molecular mechanisms underlying the early PGC development and migration.


Subject(s)
Germ Cells/metabolism , Mutation , Oryzias/embryology , Oryzias/genetics , Animals , Female , Male
12.
Mech Dev ; 121(7-8): 829-39, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210189

ABSTRACT

A gonad is formed from germ cells and somatic mesodermal cells through their interactions. Its development is coupled with the determination and differentiation of the sex and sex-associated traits. We carried out a large-scale screening of Medaka mutants in which gonadal development is affected. Screening was performed on larvae at 8 days posthatching for abnormal abundance and/or distribution of germ cells detected by the in situ hybridization for olvas (Medaka vasa). We describe here 16 mutants of 13 genes, which are classified into four groups. Group 1, consisting of four mutants of three genes kon, tot) characterised by an increase in germ cell number. An adult tot homozygote fish has the characteristic feature of possessing hypertrophic gonads filled with immature oocytes. Group 2, represented by a single gene (zen) mutant characterized by a gradual loss of germ cells. Group 3, consisting of four mutants of distinct genes (eko, eki, sht, ano) showing irregular clustering of germ cells. Group 4, consisting of seven mutants of five genes (arr, hyo, mzr, hdr, fbk) showing fragmented clusters of germ cells. In some mutants belonging to Groups 1, 3 and 4, the expression level of ftz-f1 (sf-1/Ad4BP) in gonadal somatic cells significantly decreased, suggesting that interaction between somatic and germ cells is affected.


Subject(s)
Gonads/embryology , Mutation , Oryzias/embryology , Oryzias/genetics , Animals , Female , Germ Cells/metabolism , Gonads/cytology , Male , Phenotype
13.
Mech Dev ; 121(7-8): 895-902, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15210194

ABSTRACT

We screened populations of N-ethyl-N-nitrosourea (ENU)-mutagenized Medaka, (Oryzias latipes) for radiation-sensitive mutants to investigate the mechanism of genome stability induced by ionizing radiation in developing embryos. F3 embryos derived from male founders that were homozygous for induced the mutations were irradiated with gamma-rays at the organogenesis stage (48hpf) at a dose that did not cause malformation in wild-type embryos. We screened 2130 F2 pairs and identified three types of mutants with high incidence of radiation-induced curly tailed (ric) malformations using a low dose of irradiation. The homozygous strain from one of these mutants, ric1, which is highly fertile and easy to breed, was established and characterized related to gamma-irradiation response. The ric1 strain also showed higher incidence of malformation and lower hatchability compared to the wild-type CAB strain after gamma-irradiation at the morula and pre-early gastrula stages. We found that the decrease in hatching success after gamma-irradiation, depends on the maternal genotype at the ric1 locus. Terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end-labeling assays showed a high frequency of apoptosis in the ric1 embryos immediately after gamma-irradiation at the pre-early gastrula stage but apoptotic cells were not observed before midblastula transition (MBT). The neutral comet assay revealed that the ric1 mutant has a defect in the rapid repair of DNA double-strand breaks induced by gamma-rays. These results suggest that RIC1 is involved in the DNA double strand break repair in embryos from morula to organogenesis stages, and unrepaired DNA double strand breaks in ric1 trigger apoptosis after MBT. These results support the use of the ric1 strain for investigating various biological consequences of DNA double strand breaks in vivo and for sensitive monitoring of genotoxicity related to low dose radiation.


Subject(s)
Genomic Instability , Mutation , Oryzias/genetics , Radiation Tolerance/genetics , Animals , Apoptosis/radiation effects , Comet Assay , DNA Repair/physiology , Gamma Rays , Gastrula/physiology , Oryzias/embryology , Tail/abnormalities , Tail/embryology , Tail/radiation effects , Time Factors
14.
Nature ; 428(6985): 860-4, 2004 Apr 22.
Article in English | MEDLINE | ID: mdl-15103378

ABSTRACT

Only mammals have relinquished parthenogenesis, a means of producing descendants solely from maternal germ cells. Mouse parthenogenetic embryos die by day 10 of gestation. Bi-parental reproduction is necessary because of parent-specific epigenetic modification of the genome during gametogenesis. This leads to unequal expression of imprinted genes from the maternal and paternal alleles. However, there is no direct evidence that genomic imprinting is the only barrier to parthenogenetic development. Here we show the development of a viable parthenogenetic mouse individual from a reconstructed oocyte containing two haploid sets of maternal genome, derived from non-growing and fully grown oocytes. This development was made possible by the appropriate expression of the Igf2 and H19 genes with other imprinted genes, using mutant mice with a 13-kilobase deletion in the H19 gene as non-growing oocytes donors. This full-term development is associated with a marked reduction in aberrantly expressed genes. The parthenote developed to adulthood with the ability to reproduce offspring. These results suggest that paternal imprinting prevents parthenogenesis, ensuring that the paternal contribution is obligatory for the descendant.


Subject(s)
Mice/embryology , Mice/growth & development , Parthenogenesis/physiology , Animals , Embryonic and Fetal Development/genetics , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Genomic Imprinting/genetics , Haploidy , Insulin-Like Growth Factor II/genetics , Male , Mice/genetics , Mutation , Oligonucleotide Array Sequence Analysis , Oocytes/cytology , Oocytes/metabolism , Parthenogenesis/genetics , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...