Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 10: 1700, 2019.
Article in English | MEDLINE | ID: mdl-32117327

ABSTRACT

Cyanobacteria are promising chassis strains for the photosynthetic production of platform and specialty chemicals from carbon dioxide. Their efficient light harvesting and metabolic flexibility abilities have allowed a wide range of biomolecules, such as the bioplastic polylactate precursor D-lactate, to be produced, though usually at relatively low yields. In order to increase photosynthetic electron flow towards the production of D-lactate, we have generated several strains of the marine cyanobacterium Synechococcus sp. PCC 7002 (Syn7002) with deletions in genes involved in cyclic or pseudo-cyclic electron flow around photosystem I. Using a variant of the Chlamydomonas reinhardtii D-lactate dehydrogenase (LDHSRT, engineered to efficiently utilize NADPH in vivo), we have shown that deletion of either of the two flavodiiron flv homologs (involved in pseudo-cyclic electron transport) or the Syn7002 pgr5 homolog (proposed to be a vital part of the cyclic electron transport pathway) is able to increase D-lactate production in Syn7002 strains expressing LDHSRT and the Escherichia coli LldP (lactate permease), especially at low temperature (25°C) and 0.04% (v/v) CO2, though at elevated temperatures (38°C) and/or high (1%) CO2 concentrations, the effect was less obvious. The Δpgr5 background seemed to be particularly beneficial at 25°C and 0.04% (v/v) CO2, with a nearly 7-fold increase in D-lactate accumulation in comparison to the wild-type background (≈1000 vs ≈150 mg/L) and decreased side effects in comparison to the flv deletion strains. Overall, our results show that manipulation of photosynthetic electron flow is a viable strategy to increase production of platform chemicals in cyanobacteria under ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...