Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Dis ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38060982

ABSTRACT

The activity of lenacapavir against HIV-1 has been extensively evaluated in vitro, but comparable data for HIV-2 are scarce. We determined the anti-HIV-2 activity of lenacapavir using single-cycle infections of MAGIC-5A cells and multicycle infections of a T cell line. Lenacapavir exhibited low-nanomolar activity against HIV-2, but was 11- to 14-fold less potent against HIV-2 in comparison to HIV-1. Mutations in HIV-2 that confer resistance to other antiretrovirals did not confer cross-resistance to lenacapavir. Although lenacapavir-containing regimens might be considered for appropriate patients with HIV-2, more frequent viral load and/or CD4 testing may be needed to assess clinical response.

2.
PLoS One ; 18(1): e0280568, 2023.
Article in English | MEDLINE | ID: mdl-36652466

ABSTRACT

GSK2838232 (GSK232) is a novel maturation inhibitor that blocks the proteolytic cleavage of HIV-1 Gag at the junction of capsid and spacer peptide 1 (CA/SP1), rendering newly-formed virions non-infectious. To our knowledge, GSK232 has not been tested against HIV-2, and there are limited data regarding the susceptibility of HIV-2 to other HIV-1 maturation inhibitors. To assess the potential utility of GSK232 as an option for HIV-2 treatment, we determined the activity of the compound against a panel of HIV-1, HIV-2, and SIV isolates in culture. GSK232 was highly active against HIV-1 isolates from group M subtypes A, B, C, D, F, and group O, with IC50 values ranging from 0.25-0.92 nM in spreading (multi-cycle) assays and 1.5-2.8 nM in a single cycle of infection. In contrast, HIV-2 isolates from groups A, B, and CRF01_AB, and SIV isolates SIVmac239, SIVmac251, and SIVagm.sab-2, were highly resistant to GSK232. To determine the role of CA/SP1 in the observed phenotypes, we constructed a mutant of HIV-2ROD9 in which the sequence of CA/SP1 was modified to match the corresponding sequence found in HIV-1. The resulting variant was fully susceptible to GSK232 in the single-cycle assay (IC50 = 1.8 nM). Collectively, our data indicate that the HIV-2 and SIV isolates tested in our study are intrinsically resistant to GSK232, and that the determinants of resistance map to CA/SP1. The molecular mechanism(s) responsible for the differential susceptibility of HIV-1 and HIV-2/SIV to GSK232 require further investigation.


Subject(s)
Anti-HIV Agents , HIV Seropositivity , Triterpenes , Humans , Virus Replication , HIV-2/genetics , Triterpenes/pharmacology , gag Gene Products, Human Immunodeficiency Virus/genetics , Capsid Proteins/genetics , Peptides/pharmacology , Anti-HIV Agents/pharmacology
3.
J Clin Microbiol ; 59(1)2020 12 17.
Article in English | MEDLINE | ID: mdl-33055182

ABSTRACT

The treatment of HIV-2 in resource-limited settings (RLS) is complicated by the limited availability of HIV-2-active antiretroviral drugs and inadequate access to HIV-2 viral load and drug resistance testing. Dried blood spots (DBS)-based drug resistance testing, widely studied for HIV-1, has not been reported for HIV-2 and could present an opportunity to improve care for HIV-2-infected individuals. We selected 150 DBS specimens from ongoing studies of antiretroviral therapy (ART) for HIV-2 infection in Senegal and subjected them to genotypic drug resistance testing. Total nucleic acid was extracted from DBS, reverse transcribed, PCR amplified, and analyzed by population-based Sanger sequencing, and major drug resistance-associated mutations (RAM) were identified. Parallel samples from plasma and peripheral blood mononuclear cells (PBMC) were also genotyped. We obtained 58 protease/reverse transcriptase genotypes. Plasma viral load was significantly correlated with genotyping success (P < 0.001); DBS samples with corresponding plasma viral load >250 copies/ml had a success rate of 86.8%. In paired DBS-plasma genotypes, 83.8% of RAM found in plasma were also found in DBS, and replicate DBS genotyping revealed that a single test detected 86.7% of known RAM. These findings demonstrate that DBS-based genotypic drug resistance testing for HIV-2 is feasible and can be deployed in RLS with limited infrastructure.


Subject(s)
Drug Resistance, Viral , HIV Infections , Genotype , HIV-2/genetics , Humans , Leukocytes, Mononuclear , Senegal , Specimen Handling , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...