Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 477, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745140

ABSTRACT

BACKGROUND: Since domestication, both evolutionary forces and human selection have played crucial roles in producing adaptive and economic traits, resulting in animal breeds that have been selected for specific climates and different breeding goals. Pakistani goat breeds have acquired genomic adaptations to their native climate conditions, such as tropical and hot climates. In this study, using next-generation sequencing data, we aimed to assess the signatures of positive selection in three native Pakistani goats, known as milk production breeds, that have been well adapted to their local climate. RESULTS: To explore the genomic relationship between studied goat populations and their population structure, whole genome sequence data from native goat populations in Pakistan (n = 26) was merged with available worldwide goat genomic data (n = 184), resulting in a total dataset of 210 individuals. The results showed a high genetic correlation between Pakistani goats and samples from North-East Asia. Across all populations analyzed, a higher linkage disequilibrium (LD) level (- 0.59) was found in the Pakistani goat group at a genomic distance of 1 Kb. Our findings from admixture analysis (K = 5 and K = 6) showed no evidence of shared genomic ancestry between Pakistani goats and other goat populations from Asia. The results from genomic selection analysis revealed several candidate genes related to adaptation to tropical/hot climates (such as; KITLG, HSPB9, HSP70, HSPA12B, and HSPA12B) and milk production related-traits (such as IGFBP3, LPL, LEPR, TSHR, and ACACA) in Pakistani native goat breeds. CONCLUSIONS: The results from this study shed light on the structural variation in the DNA of the three native Pakistani goat breeds. Several candidate genes were discovered for adaptation to tropical/hot climates, immune responses, and milk production traits. The identified genes could be exploited in goat breeding programs to select efficient breeds for tropical/hot climate regions.


Subject(s)
Genomics , Goats , Linkage Disequilibrium , Milk , Tropical Climate , Animals , Goats/genetics , Milk/metabolism , Genomics/methods , Adaptation, Physiological/genetics , Selection, Genetic , Polymorphism, Single Nucleotide , Pakistan , Phenotype , Breeding
2.
Vet Microbiol ; 284: 109831, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37480660

ABSTRACT

Orf virus (ORFV), also known as infectious pustular virus, leads to an acute contagious zoonotic infectious disease. ORFV can directly contact and infect epithelial cells of skin and mucosa, causing damage to tissue cells. So far, the pathway of ORFV entry into cells is unclear. Therefore, finding the internalization pathway of ORFV will help to elucidate the cellular and molecular mechanisms of ORFV infection and invasion, which in turn will provide a certain reference for the prevention and treatment of ORFV. In the present study, chemical inhibitors were used to analyze the mechanism of ORFV entry into target cells. The results showed that the inhibitor of clathrin-mediated endocytosis could inhibit ORFV entry into cells. However, the inhibitor of caveolae-mediated endocytosis cannot inhibit ORFV entry into cells. In addition, inhibition of macropinocytosis pathway also significantly reduced ORFV internalization. Furthermore, the inhibitors of acidification and dynamin also prevented ORFV entry. However, results demonstrated that inhibitors inhibited ORFV entry but did not inhibit ORFV binding. Notably, extracellular trypsin promoted ORFV entry into cells directly, even when the endocytic pathway was inhibited. In conclusion, ORFV enters into its target cells by clathrin-mediated endocytosis and macropinocytosis, while caveolae-dependent endocytosis has little effects on this process. In addition, the entry into target cells by ORFV required an acid environment and the effect of dynamin. Meanwhile, we emphasize that broad-spectrum antiviral inhibitors and extracellular enzyme inhibitors are likely to be effective strategies for the prevention and treatment of ORFV infection.


Subject(s)
Ecthyma, Contagious , Orf virus , Sheep Diseases , Animals , Sheep , Endocytosis , Pinocytosis , Virus Internalization , Clathrin
3.
Sci Adv ; 9(25): eadf4068, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37352351

ABSTRACT

The increased tameness to reduce avoidance of human in wild animals has been long proposed as the key step of animal domestication. The tameness is a complex behavior trait and largely determined by genetic factors. However, the underlying genetic mutations remain vague and how they influence the animal behaviors is yet to be explored. Behavior tests of a wild-domestic hybrid goat population indicate the locus under strongest artificial selection during domestication may exert a huge effect on the flight distance. Within this locus, only one missense mutation RRM1I241V which was present in the early domestic goat ~6500 years ago. Genome editing of RRM1I241V in mice showed increased tameness and sociability and reduced anxiety. These behavioral changes induced by RRM1I241V were modulated by the alternation of activity of glutamatergic synapse and some other synapse-related pathways. This study established a link between RRM1I241V and tameness, demonstrating that the complex behavioral change can be achieved by mutations under strong selection during animal domestication.


Subject(s)
Animals, Domestic , Behavior, Animal , Domestication , Mutation, Missense , Ribonucleoside Diphosphate Reductase , Animals , Mice , Animals, Domestic/genetics , Goats/genetics , Ribonucleoside Diphosphate Reductase/genetics , Selection, Genetic
4.
Front Microbiol ; 13: 948617, 2022.
Article in English | MEDLINE | ID: mdl-36160207

ABSTRACT

Social interaction facilitates the horizontal transmission of the microbiota between different individuals. However, little is known about the level of microbiota transmission in different livestock animals and different digestive tracts. The Hainan black goat and Wuzhishan pig are typical tropical local breeds on Hainan Island in China. Thus, we sampled and analyzed the gut microbiome in Hainan black goats (cecum and rumen) and Wuzhishan pigs (cecum) to study horizontal transmission by rearing them in the same pen (six goats and six pigs) or separate pens (nine goats and nine pigs). De novo assembly and binning recovered 3,262 strain-level and 2,488 species-level metagenome-assembled genomes (MAGs) using ∼1.3 Tb sequencing data. Of these MAGs, 1,856 MAGs were identified as novel strain. Compared with goats living in separate pens, social interaction in the same pen promotes community homogeneity in the rumen microbiome (P < 0.05) and the cecum microbiome (P < 0.05), respectively. Notably, approximately 7.08% (231/3262) of the gut microbial population could transmit during cohousing, 12 strains only in inter-species transmission, versus 190 strains only in intra-species transmission, and 10 strains only in foregut and hindgut transmission. In addition, the social contact group has high transmitted strain abundance, which is correlated with community composition. This study provided a new insight into the influence of social interaction on the animal gut microbiota.

5.
Animals (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114109

ABSTRACT

Goat milk is essential for the initial development of kids by providing a great source of commensal bacteria. In this study, we analyzed the microbiota of the milk of 30 healthy Saanen dairy goats. The 30 samples comprised 15 colostrum and 15 mature milk samples, collected from three different farms of Shaanxi Province. Colostrum samples were collected daily for five days post-delivery and mature milk was collected on the 7th, 10th, 20th, 30th, and 40th days. The result showed that microbial alpha diversity was higher in the mature milk compared with that in the colostrum. Linear discriminant analysis effect size (LEfSe) was performed to detect differentially abundant taxa in colostrum and goat milk. According to taxonomy results, Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the predominant bacteria phyla in both colostrum and mature milk. In addition, lactation stage noticeably influenced the composition of milk microbiota. Specifically, Novosphingobium, Brachybacterium, Psychrobacter, Lactobacillus, Yersinia, Roseateles, Rothia, Sanguibacter, Cloacibacterium, Variovorax, Sphingobacterium, and Coxiella were enriched in the colostrum, while Georgenia, Peptostreptococcus, Bacteroidales, Yaniella, Planomicrobium, Cloacibacterium, Azospirillum, Turicibacter, Cupriavidus, Herbaspirillum, Rhodobacteraceae, and Aeromonadales were the dominant genera in the mature milk. The enriched metabolic functions of the goat milk microbiota were predicted by PICRUSt and classified by KEGG pathway. Moreover, the abundances of environmental information processing, cellular processes pathway, genetic information processing pathway, organismal systems pathway, and metabolism pathway were significantly different between microbiota of colostrum and mature milk. Altogether, our study disclosed the significant difference between the microbial communities of colostrum and mature milk and provided grounds for further research in dairy microbiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...