Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
1.
Radiother Oncol ; : 110386, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880414

ABSTRACT

PET is increasingly used for target volume definition in the radiotherapy of glioblastoma, as endorsed by the 2023 ESTRO-EANO guidelines. In view of its growing adoption into clinical practice and upcoming PET-based multi-center trials, this paper aims to assist in overcoming common pitfalls of FET PET-based target delineation in glioblastoma.

2.
Clin Transl Radiat Oncol ; 47: 100790, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38765202

ABSTRACT

Background: The PRIDE trial (NOA-28; ARO-2024-01; AG-NRO-06; NCT05871021) is designed to determine whether a dose escalation with 75.0 Gy in 30 fractions can enhance the median overall survival (OS) in patients with methylguanine methyltransferase (MGMT) promotor unmethylated glioblastoma compared to historical median OS rates, while being isotoxic to historical cohorts through the addition of concurrent bevacizumab (BEV). To ensure protocol-compliant irradiation planning with all study centers, a dummy run was planned and the plan quality was evaluated. Methods: A suitable patient case was selected and the computed tomography (CT), magnetic resonance imaging (MRI) and O-(2-[18F]fluoroethyl)-L-tyrosine (FET) positron emission tomography (PET) contours were made available. Participants at the various intended study sites performed radiation planning according to the PRIDE clinical trial protocol. The treatment plans and dose grids were uploaded as Digital Imaging and Communications in Medicine (DICOM) files to a cloud-based platform. Plan quality and protocol adherence were analyzed using a standardized checklist, scorecards and indices such as Dice Score (DSC) and Hausdorff Distance (HD). Results: Median DSC was 0.89, 0.90, 0.88 for PTV60, PTV60ex (planning target volume receiving 60.0 Gy for the standard and the experimental plan, respectively) and PTV75 (PTV receiving 75.0 Gy in the experimental plan), respectively. Median HD values were 17.0 mm, 13.9 mm and 12.1 mm, respectively. These differences were also evident in the volumes: The PTV60 had a volume range of 219.1-391.3 cc (median: 261.9 cc) for the standard plans, while the PTV75 volumes for the experimental plans ranged from 71.5-142.7 cc (median: 92.3 cc). The structures with the largest deviations in Dice score were the pituitary gland (median 0.37, range 0.00-0.69) and the right lacrimal gland (median 0.59, range 0.42-0.78). Conclusions: The deviations revealed the necessity of systematic trainings with appropriate feedback before the start of clinical trials in radiation oncology and the constant monitoring of protocol compliance throw-out the study. Trial registration: NCT05871021.

3.
Curr Oncol ; 31(5): 2679-2688, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38785484

ABSTRACT

The use of hypofractionated radiotherapy in prostate cancer has been increasingly evaluated, whereas accumulated evidence demonstrates comparable oncologic outcomes and toxicity rates compared to normofractionated radiotherapy. In this prospective study, we evaluate all patients with intermediate-risk prostate cancer treated with ultrahypofractionated (UHF) MRI-guided radiotherapy on a 1.5 T MR-Linac within our department and report on workflow and feasibility, as well as physician-recorded and patient-reported longitudinal toxicity. A total of 23 patients with intermediate-risk prostate cancer treated on the 1.5 T MR-Linac with a dose of 42.7 Gy in seven fractions (seven MV step-and-shoot IMRT) were evaluated within the MRL-01 study (NCT04172753). The duration of each treatment step, choice of workflow (adapt to shape-ATS or adapt to position-ATP) and technical and/or patient-sided treatment failure were recorded for each fraction and patient. Acute and late toxicity were scored according to RTOG and CTC V4.0, as well as the use of patient-reported questionnaires. The median follow-up was 12.4 months. All patients completed the planned treatment. The mean duration of a treatment session was 38.2 min. In total, 165 radiotherapy fractions were delivered. ATS was performed in 150 fractions, 5 fractions were delivered using ATP, and 10 fractions were delivered using both ATS and ATP workflows. Severe acute bother (G3+) regarding IPS-score was reported in five patients (23%) at the end of radiotherapy. However, this tended to normalize and no G3+ IPS-score was observed later at any point during follow-up. Furthermore, no other severe genitourinary (GU) or gastrointestinal (GI) acute or late toxicity was observed. One-year biochemical-free recurrence survival was 100%. We report the excellent feasibility of UHF MR-guided radiotherapy for intermediate-risk prostate cancer patients and acceptable toxicity rates in our preliminary study. Randomized controlled studies with long-term follow-up are warranted to detect possible advantages over current state-of-the-art RT techniques.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Image-Guided , Humans , Male , Prostatic Neoplasms/radiotherapy , Prospective Studies , Aged , Radiotherapy, Image-Guided/methods , Middle Aged , Magnetic Resonance Imaging/methods , Radiation Dose Hypofractionation , Aged, 80 and over
4.
Neuro Oncol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695575

ABSTRACT

Meningiomas are the most common primary intracranial tumors in adults and are increasing in incidence due to the aging population and the rising availability of neuroimaging. While most exhibit non-malignant behaviour, a subset of meningiomas are biologically aggressive and lead to significant neurological morbidity and mortality. In recent years, meaningful advances in our understanding of the biology of these tumors have led to the incorporation of molecular biomarkers into their grading and prognostication. However, unlike other central nervous system tumors, a unified molecular taxonomy for meningiomas has not yet been established and remains an overarching goal of the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy-Not Official WHO (cIMPACT-NOW) working group. There also remains clinical equipoise on how specific meningioma cases and patient populations should be optimally managed. To address these existing gaps, members of the International Consortium on Meningiomas (ICOM) including field-leading experts, have prepared a comprehensive consensus narrative review directed towards clinicians, researchers, and patients. Included in this manuscript are detailed overviews of proposed molecular classifications, novel biomarkers, contemporary treatment strategies, trials on systemic therapies, health-related quality of life studies, and management strategies for unique meningioma patient populations. In each section we discuss the current state of knowledge as well as ongoing clinical and research challenges to road map future directions for further investigation.

5.
Clin Transl Radiat Oncol ; 46: 100765, 2024 May.
Article in English | MEDLINE | ID: mdl-38560512

ABSTRACT

Purpose: Due to its close vicinity to critical structures, especially the spinal cord, standards for safety for spine stereotactic body radiotherapy (SBRT) should be high. This study was conducted, to evaluate intrafractional motion during spine SBRT for patients without individualized immobilization (e.g., vacuum cushions) using high accuracy patient monitoring via orthogonal X-ray imaging. Methods: Intrafractional X-ray data were collected from 29 patients receiving 79 fractions of spine SBRT. No individualized immobilization devices were used during the treatment. Intrafractional motion was monitored using the ExacTrac Dynamic (ETD) System (Brainlab AG, Munich, Germany). Deviations were detected in six degrees of freedom (6 DOF). Tolerances for repositioning were 0.7 mm for translational and 0.5° for rotational deviations. Patients were repositioned when the tolerance levels were exceeded. Results: Out of the 925 pairs of stereoscopic X-ray images examined, 138 (15 %) showed at least one deviation exceeding the predefined tolerance values. In all 6 DOF together, a total of 191 deviations out of tolerance were recorded. The frequency of deviations exceeding the tolerance levels varied among patients but occurred in all but one patient. Deviations out of tolerance could be seen in all 6 DOF. Maximum translational deviations were 2.6 mm, 2.3 mm and 2.8 mm in the lateral, longitudinal and vertical direction. Maximum rotational deviations were 1.8°, 2.6° and 1.6° for pitch, roll and yaw, respectively. Translational deviations were more frequent than rotational ones, and frequency and magnitude of deviations showed an inverse correlation. Conclusion: Intrafractional motion detection and patient repositioning during spine SBRT using X-ray imaging via the ETD System can lead to improved safety during the application of high BED in critical locations. When using intrafractional imaging with low thresholds for re-positioning individualized immobilization devices (e.g. vacuum cushions) may be omitted.

6.
Neurooncol Adv ; 6(1): vdae053, 2024.
Article in English | MEDLINE | ID: mdl-38680987

ABSTRACT

Background: Little is known about the growth dynamics of untreated glioblastoma and its possible influence on postoperative survival. Our aim was to analyze a possible association of preoperative growth dynamics with postoperative survival. Methods: We performed a retrospective analysis of all adult patients surgically treated for newly diagnosed glioblastoma at our center between 2010 and 2020. By volumetric analysis of data of patients with availability of ≥3 preoperative sequential MRI, a growth pattern was aimed to be identified. Main inclusion criterion for further analysis was the availability of two preoperative MRI scans with a slice thickness of 1 mm, at least 7 days apart. Individual growth rates were calculated. Association with overall survival (OS) was examined by multivariable. Results: Out of 749 patients screened, 13 had ≥3 preoperative MRI, 70 had 2 MRI and met the inclusion criteria. A curve estimation regression model showed the best fit for exponential tumor growth. Median tumor volume doubling time (VDT) was 31 days, median specific growth rate (SGR) was 2.2% growth per day. SGR showed negative correlation with tumor size (rho = -0.59, P < .001). Growth rates were dichotomized according to the median SGR.OS was significantly longer in the group with slow growth (log-rank: P = .010). Slower preoperative growth was independently associated with longer overall survival in a multivariable Cox regression model for patients after tumor resection. Conclusions: Especially small lesions suggestive of glioblastoma showed exponential tumor growth with variable growth rates and a median VDT of 31 days. SGR was significantly associated with OS in patients with tumor resection in our sample.

7.
Phys Imaging Radiat Oncol ; 29: 100562, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38463219

ABSTRACT

Background and purpose: Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy (MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted dose. Materials and methods: Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Statistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). Results: Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated bladder D0.2cc decreased by 0.4 % ([-1.2, 0.4]%), urethra+2mmD0.2cc by 0.8 % ([-1.6, -0.1]%), while rectum D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. Results of both DIR approaches differed on average by less than 0.2 %. Conclusions: Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated dose.

8.
Clin Transl Radiat Oncol ; 45: 100736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433949

ABSTRACT

Background: The aim of this prospective observational study was to evaluate the dosimetry benefits, changes in pulmonary function, and clinical outcome of online adaptive MR-guided SBRT. Methods: From 11/2020-07/2022, 45 consecutive patients with 59 lesions underwent multi-fraction SBRT (3-8 fractions) at our institution. Patients were eligible if they had biopsy-proven NSCLC or lung cancer/metastases diagnosed via clinical imaging. Endpoints were local control (LC) and overall survival (OS). We evaluated PTV/GTV dose coverage, organs at risk exposure, and changes in pulmonary function (PF). Acute toxicity was classified per the National Cancer Institute-Common Terminology Criteria for Adverse Events version 5.0. Results: The median PTV was 14.4 cm3 (range: 3.4 - 96.5 cm3). In total 195/215 (91%) plans were reoptimised. In the reoptimised vs. predicted plans, PTV coverage by the prescribed dose increased in 94.6% of all fractions with a median increase in PTV VPD of 5.6% (range: -1.8 - 44.6%, p < 0.001), increasing the number of fractions with PTV VPD ≥ 95% from 33% to 98%. The PTV D95% and D98% (BED10) increased in 93% and 95% of all fractions with a median increase of 7.7% (p < 0.001) and 10.6% (p < 0.001). The PTV D95% (BED10) increased by a mean of 9.6 Gy (SD: 10.3 Gy, p < 0.001). At a median follow-up of 21.4 months (95% CI: 12.3-27.0 months), 1- and 2-year LC rates were 94.8% (95% CI: 87.6 - 100.0%) and 91.1% (95% CI: 81.3 - 100%); 1- and 2-year OS rates were 85.6% (95% CI: 75.0 - 96.3%) and 67.1 % (95% CI: 50.3 - 83.8%). One grade ≥ 3 toxicity and no significant reduction in short-term PF parameters were recorded. Conclusions: Online adaptive MR-guided SBRT is an effective, safe and generally well tolerated treatment option for lung tumours achieving encouraging local control rates with significantly improved target volume coverage.

9.
Radiat Oncol ; 19(1): 31, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448888

ABSTRACT

BACKGROUND: Longitudinal assessments of apparent diffusion coefficients (ADCs) derived from diffusion-weighted imaging (DWI) during intracranial radiotherapy at magnetic resonance imaging-guided linear accelerators (MR-linacs) could enable early response assessment by tracking tumor diffusivity changes. However, DWI pulse sequences are currently unavailable in clinical practice at low-field MR-linacs. Quantifying the in vivo repeatability of ADC measurements is a crucial step towards clinical implementation of DWI sequences but has not yet been reported on for low-field MR-linacs. This study assessed ADC measurement repeatability in a phantom and in vivo at a 0.35 T MR-linac. METHODS: Eleven volunteers and a diffusion phantom were imaged on a 0.35 T MR-linac. Two echo-planar imaging DWI sequence variants, emphasizing high spatial resolution ("highRes") and signal-to-noise ratio ("highSNR"), were investigated. A test-retest study with an intermediate outside-scanner-break was performed to assess repeatability in the phantom and volunteers' brains. Mean ADCs within phantom vials, cerebrospinal fluid (CSF), and four brain tissue regions were compared to literature values. Absolute relative differences of mean ADCs in pre- and post-break scans were calculated for the diffusion phantom, and repeatability coefficients (RC) and relative RC (relRC) with 95% confidence intervals were determined for each region-of-interest (ROI) in volunteers. RESULTS: Both DWI sequence variants demonstrated high repeatability, with absolute relative deviations below 1% for water, dimethyl sulfoxide, and polyethylene glycol in the diffusion phantom. RelRCs were 7% [5%, 12%] (CSF; highRes), 12% [9%, 22%] (CSF; highSNR), 9% [8%, 12%] (brain tissue ROIs; highRes), and 6% [5%, 7%] (brain tissue ROIs; highSNR), respectively. ADCs measured with the highSNR variant were consistent with literature values for volunteers, while smaller mean values were measured for the diffusion phantom. Conversely, the highRes variant underestimated ADCs compared to literature values, indicating systematic deviations. CONCLUSIONS: High repeatability of ADC measurements in a diffusion phantom and volunteers' brains were measured at a low-field MR-linac. The highSNR variant outperformed the highRes variant in accuracy and repeatability, at the expense of an approximately doubled voxel volume. The observed high in vivo repeatability confirms the potential utility of DWI at low-field MR-linacs for early treatment response assessment.


Subject(s)
Brain , Diffusion Magnetic Resonance Imaging , Humans , Brain/diagnostic imaging , Phantoms, Imaging , Diffusion , Dimethyl Sulfoxide
10.
Clin Transl Radiat Oncol ; 45: 100738, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38370495

ABSTRACT

Purpose: This systematic review aims to comprehensively summarize the current prospective evidence regarding Stereotactic Body Radiotherapy (SBRT) in various clinical contexts for pancreatic cancer including its use as neoadjuvant therapy for borderline resectable pancreatic cancer (BRPC), induction therapy for locally advanced pancreatic cancer (LAPC), salvage therapy for isolated local recurrence (ILR), adjuvant therapy after radical resection, and as a palliative treatment. Special attention is given to the application of magnetic resonance-guided radiotherapy (MRgRT). Methods: Following PRISMA guidelines, a systematic review of the Medline database via PubMed was conducted focusing on prospective studies published within the past decade. Data were extracted concerning study characteristics, outcome measures, toxicity profiles, SBRT dosage and fractionation regimens, as well as additional systemic therapies. Results and conclusion: 31 studies with in total 1,571 patients were included in this review encompassing 14 studies for LAPC, 9 for neoadjuvant treatment, 2 for adjuvant treatment, 2 for ILR, with an additional 4 studies evaluating MRgRT. In LAPC, SBRT demonstrates encouraging results, characterized by favorable local control rates. Several studies even report conversion to resectable disease with substantial resection rates reaching 39%. The adoption of MRgRT may provide a solution to the challenge to deliver ablative doses while minimizing severe toxicities. In BRPC, select prospective studies combining preoperative ablative-dose SBRT with modern induction systemic therapies have achieved remarkable resection rates of up to 80%. MRgRT also holds potential in this context. Adjuvant SBRT does not appear to confer relevant advantages over chemotherapy. While prospective data for SBRT in ILR and for palliative pain relief are limited, they corroborate positive findings from retrospective studies.

11.
Biomedicines ; 12(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38255293

ABSTRACT

BACKGROUND: The translocator protein (TSPO) has been proven to have great potential as a target for the positron emission tomography (PET) imaging of glioblastoma. However, there is an ongoing debate about the potential various sources of the TSPO PET signal. This work investigates the impact of the inoculation-driven immune response on the PET signal in experimental orthotopic glioblastoma. METHODS: Serial [18F]GE-180 and O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) PET scans were performed at day 7/8 and day 14/15 after the inoculation of GL261 mouse glioblastoma cells (n = 24) or saline (sham, n = 6) into the right striatum of immunocompetent C57BL/6 mice. An additional n = 25 sham mice underwent [18F]GE-180 PET and/or autoradiography (ARG) at days 7, 14, 21, 28, 35, 50 and 90 in order to monitor potential reactive processes that were solely related to the inoculation procedure. In vivo imaging results were directly compared to tissue-based analyses including ARG and immunohistochemistry. RESULTS: We found that the inoculation process represents an immunogenic event, which significantly contributes to TSPO radioligand uptake. [18F]GE-180 uptake in GL261-bearing mice surpassed [18F]FET uptake both in the extent and the intensity, e.g., mean target-to-background ratio (TBRmean) in PET at day 7/8: 1.22 for [18F]GE-180 vs. 1.04 for [18F]FET, p < 0.001. Sham mice showed increased [18F]GE-180 uptake at the inoculation channel, which, however, continuously decreased over time (e.g., TBRmean in PET: 1.20 at day 7 vs. 1.09 at day 35, p = 0.04). At the inoculation channel, the percentage of TSPO/IBA1 co-staining decreased, whereas TSPO/GFAP (glial fibrillary acidic protein) co-staining increased over time (p < 0.001). CONCLUSION: We identify the inoculation-driven immune response to be a relevant contributor to the PET signal and add a new aspect to consider for planning PET imaging studies in orthotopic glioblastoma models.

12.
Med Phys ; 51(3): 1957-1973, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37683107

ABSTRACT

BACKGROUND: Real-time tumor tracking is one motion management method to address motion-induced uncertainty. To date, fiducial markers are often required to reliably track lung tumors with X-ray imaging, which carries risks of complications and leads to prolonged treatment time. A markerless tracking approach is thus desirable. Deep learning-based approaches have shown promise for markerless tracking, but systematic evaluation and procedures to investigate applicability in individual cases are missing. Moreover, few efforts have been made to provide bounding box prediction and mask segmentation simultaneously, which could allow either rigid or deformable multi-leaf collimator tracking. PURPOSE: The purpose of this study was to implement a deep learning-based markerless lung tumor tracking model exploiting patient-specific training which outputs both a bounding box and a mask segmentation simultaneously. We also aimed to compare the two kinds of predictions and to implement a specific procedure to understand the feasibility of markerless tracking on individual cases. METHODS: We first trained a Retina U-Net baseline model on digitally reconstructed radiographs (DRRs) generated from a public dataset containing 875 CT scans and corresponding lung nodule annotations. Afterwards, we used an independent cohort of 97 lung patients to develop a patient-specific refinement procedure. In order to determine the optimal hyperparameters for automatic patient-specific training, we selected 13 patients for validation where the baseline model predicted a bounding box on planning CT (PCT)-DRR with intersection over union (IoU) with the ground-truth higher than 0.7. The final test set contained the remaining 84 patients with varying PCT-DRR IoU. For each testing patient, the baseline model was refined on the PCT-DRR to generate a patient-specific model, which was then tested on a separate 10-phase 4DCT-DRR to mimic the intrafraction motion during treatment. A template matching algorithm served as benchmark model. The testing results were evaluated by four metrics: the center of mass (COM) error and the Dice similarity coefficient (DSC) for segmentation masks, and the center of box (COB) error and the DSC for bounding box detections. Performance was compared to the benchmark model including statistical testing for significance. RESULTS: A PCT-DRR IoU value of 0.2 was shown to be the threshold dividing inconsistent (68%) and consistent (100%) success (defined as mean bounding box DSC > 0.6) of PS models on 4DCT-DRRs. Thirty-seven out of the eighty-four testing cases had a PCT-DRR IoU above 0.2. For these 37 cases, the mean COM error was 2.6 mm, the mean segmentation DSC was 0.78, the mean COB error was 2.7 mm, and the mean box DSC was 0.83. Including the validation cases, the model was applicable to 50 out of 97 patients when using the PCT-DRR IoU threshold of 0.2. The inference time per frame was 170 ms. The model outperformed the benchmark model on all metrics, and the comparison was significant (p < 0.001) over the 37 PCT-DRR IoU > 0.2 cases, but not over the undifferentiated 84 testing cases. CONCLUSIONS: The implemented patient-specific refinement approach based on a pre-trained baseline model was shown to be applicable to markerless tumor tracking in simulated radiographs for lung cases.


Subject(s)
Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Lung , Algorithms , Fiducial Markers , Image Processing, Computer-Assisted
13.
Strahlenther Onkol ; 200(2): 151-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37889301

ABSTRACT

PURPOSE: Modern digital teaching formats have become increasingly important in recent years, in part due to the COVID-19 pandemic. In January 2021, an online-based webinar series was established by the German Society for Radiation Oncology (DEGRO) and the young DEGRO (yDEGRO) working group. In the monthly 120-minute courses, selected lecturers teach curricular content as preparation for the board certification exam for radiation oncology. METHODS: The evaluation of the 24 courses between 01.2021 and 12.2022 was performed using a standardized questionnaire with 21 items (recording epidemiological characteristics of the participants, didactic quality, content quality). A Likert scale (1-4) was used in combination with binary and open-ended questions. RESULTS: A combined total of 4200 individuals (1952 in 2021 and 2248 in 2022) registered for the courses, and out of those, 934 participants (455 in 2021 and 479 in 2022) later provided evaluations for the respective courses (36% residents, 35% specialists, 21% medical technicians for radiology [MTR], 8% medical physics experts [MPE]). After 2 years, 74% of the DEGRO Academy curriculum topics were covered by the monthly webinars. The overall rating by participants was positive (mean 2021: 1.33 and 2022: 1.25) and exceeded the curriculum offered at each site for 70% of participants. Case-based learning was identified as a particularly well-rated method. CONCLUSION: The DEGRO webinar expands the digital teaching opportunities in radiation oncology. The consistently high number of participants confirms the need for high-quality teaching and underlines the advantages of e­learning methods. Optimization opportunities were identified through reevaluation of feedback from course participants. In its design as a teaching format for a multiprofessional audience, the webinar series could be used as a practice model of online teaching for other disciplines.


Subject(s)
COVID-19 , Radiation Oncology , Humans , Radiation Oncology/education , Pandemics , Curriculum , COVID-19/epidemiology , Societies, Medical
15.
Clin Transl Radiat Oncol ; 45: 100706, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38116137

ABSTRACT

Background and purpose: The PRIDE trial (NOA-28; ARO-2022-12; NCT05871021) is scheduled to start recruitment in October 2023. Its primary objective is to enhance median overall survival (OS), compared to historical median OS rates, in patients with methylguanine methlyltransferase (MGMT) promotor unmethylated glioblastoma by incorporating isotoxic dose escalation to 75 Gy in 30 fractions. To achieve isotoxicity and counteract the elevated risk of radiation necrosis (RN) associated with dose-escalated regimens, the addition of protective concurrent bevacizumab (BEV) serves as an innovative approach. The current study aims to assess the dosimetric feasibility of the proposed concept. Materials and methods: A total of ten patients diagnosed with glioblastoma were included in this dosimetric analysis. Delineation of target volumes for the reference plans adhered to the ESTRO-EANO 2023 guideline. The experimental plans included an additional volume for the integrated boost. Additionally, the 60 Gy-volume was reduced by using a margin of 1.0 cm instead of 1.5 cm. To assess the risk of symptomatic RN, the Normal Tissue Complication Probability (NTCP) was calculated and compared between the reference and experimental plans. Results: Median NTCP of the reference plan (NTCPref) and of the experimental plan (NTCPex) were 0.24 (range 0.11-0.29) and 0.42 (range 0.18-0.54), respectively. NTCPex was a median of 1.77 (range 1.60-1.99) times as high as the NTXPref. In a logarithmic comparison, the risk of RN is enhanced by a factor of median 2.00 (range 1.66-2.35). The defined constraints for the organs at risk were feasible. Conclusion: When considering the potential protective effect of BEV, which we hypothesized might reduce the risk of RN by approximately two-fold, achieving isotoxicity with the proposed dose-escalated experimental plan for the PRIDE trial seems feasible.

16.
Cancers (Basel) ; 15(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38001664

ABSTRACT

The advancement of systemic targeted treatments has led to improvements in the management of metastatic disease, particularly in terms of survival outcomes. However, brain metastases remain less responsive to systemic therapies, underscoring the significance of local interventions for comprehensive disease control. Over the past years, the threshold for treating brain metastases through stereotactic radiosurgery has risen. Yet, as the number of treated metastases increases, treatment complexity and duration also escalate. This trend has made multi-isocenter radiosurgery treatments, such as those with the Gamma Knife, challenging to plan and lengthy for patients. In contrast, single-isocenter approaches employing linear accelerators offer an efficient and expeditious treatment option. This review delves into the literature, comparing different linear-accelerator-based techniques with each other and in relation to dedicated systems, focusing on dosimetric considerations and feasibility.

17.
Radiother Oncol ; 189: 109947, 2023 12.
Article in English | MEDLINE | ID: mdl-37806559

ABSTRACT

BACKGROUND: Re-irradiation is an increasingly utilized treatment for recurrent, metastatic or new malignancies after previous radiotherapy. It is unclear how re-irradiation is applied in clinical practice. We aimed to investigate the patterns of care of re-irradiation internationally. MATERIAL/METHODS: A cross-sectional survey conducted between March and September 2022. The survey was structured into six sections, each corresponding to a specific anatomical region. Participants were instructed to complete the sections of their clinical expertise. A total of 15 multiple-choice questions were included in each section, addressing various aspects of the re-irradiation process. The online survey targeted radiation and clinical oncologists and was endorsed by the European Society for Radiotherapy and Oncology (ESTRO) and the European Organisation for Research and Treatment of Cancer (EORTC). RESULTS: 371 physicians from 55 countries across six continents participated. Participants had a median professional experience of 16 years, and the majority (60%) were affiliated with an academic hospital. The brain region was the most common site for re-irradiation (77%), followed by the pelvis (65%) and head and neck (63%). Prolonging local control was the most common goal (90-96% across anatomical regions). The most common minimum interval between previous radiotherapy and re-irradiation was 6-12 months (45-55%). Persistent grade 3 or greater radiation-induced toxicity (77-80%) was the leading contraindication. Variability in organs at risk dose constraints for re-irradiation was observed. Advanced imaging modalities and conformal radiotherapy techniques were predominantly used. A scarcity of institutional guidelines for re-irradiation was reported (16-19%). Participants from European centers more frequently applied thoracic and abdominal re-irradiation. Indications did not differ between academic and non-academic hospitals. CONCLUSION: This study highlights the heterogeneity in re-irradiation practices across anatomical regions and emphasizes the need for high-quality evidence from prospective studies to guide treatment decisions and derive safe cumulative dose constraints.


Subject(s)
Radiotherapy, Conformal , Re-Irradiation , Humans , Re-Irradiation/methods , Cross-Sectional Studies , Prospective Studies , Neoplasm Recurrence, Local/pathology
18.
Oncol Res Treat ; 46(11): 466-475, 2023.
Article in English | MEDLINE | ID: mdl-37827135

ABSTRACT

INTRODUCTION: Immunotherapy has been established as the standard treatment option for patients with advanced hepatocellular carcinoma (aHCC). Despite the increased efficacy, disease progression occurs in a relevant proportion of patients even after an objective response. Combination concepts with locoregional therapy are currently under investigation for hepatic disease but are also in discussion for the control of distant metastasis. Radiotherapy is a highly effective treatment modality for local tumor control. It is also thought to increase the efficacy of checkpoint inhibition and sensitize distant lesions to the effects of immunotherapy, but may potentially increase adverse effects. In our center, few patients with aHCC treated with immune checkpoint inhibitors (ICIs) received concomitant radiotherapy for symptom or disease control. The aim of this study was to retrospectively analyze adverse effects and efficacy of concomitant radiotherapy in patients with aHCC treated with checkpoint inhibition. METHODS: To this aim, patients who received a combination of ICI and radiotherapy in our institution were retrospectively considered for analysis. The predefined inclusion criterion was radiotherapy after initiated checkpoint inhibition and continuation of ICI therapy for at least 8 weeks. Adverse effects and efficacy measurements were performed according to local standards. RESULTS: The database search of 2016-2021 revealed six consecutive patients fulfilling the predefined criteria for concomitant ICI and radiotherapy. Three patients received high-dose-rate brachytherapy (15 Gy) to treat progredient hepatic lesions. Two patients received stereotactic body radiotherapy (SBRT) (25-30 Gy) for symptom control, and 1 patient received brachytherapy and SBRT to treat metastases. No severe adverse events were reported in the period (<6 months) after concomitant radiotherapy. In 5 out of 6 cases, long-term tumor control could be achieved by this therapeutic combination. CONCLUSION: A good efficacy of concomitant radiotherapy and checkpoint inhibition has been achieved with no safety concerns. Further investigations should evaluate the safety, appropriate clinical context, and efficacy of this promising approach.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Radiosurgery , Humans , Carcinoma, Hepatocellular/radiotherapy , Retrospective Studies , Liver Neoplasms/radiotherapy , Treatment Outcome
20.
J Cancer Res Clin Oncol ; 149(19): 17071-17079, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37750957

ABSTRACT

BACKGROUND: Growing challenges in oncology require evolving educational methods and content. International efforts to reform oncology education are underway. Hands-on, interdisciplinary, and compact course formats have shown great effectiveness in the education of medical students. Our aim was to establish a new interdisciplinary one-week course on the principles of oncology using state-of-the-art teaching methods. METHODS: In an initial survey, medical students of LMU Munich were questioned about their current level of knowledge on the principles of oncology. In a second two-stage survey, the increase in knowledge resulting from our recently established interdisciplinary one-week course was determined. RESULTS: The medical students' knowledge of clinically important oncological topics, such as the diagnostic workup and interdisciplinary treatment options, showed a need for improvement. Knowledge of the major oncological entities was also in an expandable state. By attending the one-week course on the principles of oncology, students improved their expertise in all areas of the clinical workup in oncology and had the opportunity to close previous knowledge gaps. In addition, students were able to gain more in-depth clinical knowledge on the most common oncological entities. CONCLUSION: The interdisciplinary one-week course on the principles of oncology proved to be an effective teaching method to expand the knowledge of the future physicians to an appropriate level. With its innovative and interdisciplinary approach, the one-week course could be used as a showcase project for the ongoing development of medical education in Germany.


Subject(s)
Medical Oncology , Humans , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...