Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 210: 261-70, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774191

ABSTRACT

Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates.


Subject(s)
Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants/analysis , Animals , Mining , Wastewater/chemistry
2.
Sci Total Environ ; 408(16): 3240-50, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20478612

ABSTRACT

Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L(-)(1) Fe; 38 mg L(-)(1) Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L(-)(1) Fe; 0.05 mg L(-)(1) Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH<5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations >2.7 mg L(-)(1) and nine taxa were only found in streams with metal concentrations <1 mg L(-)(1). The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above approximately 4.5 and reducing concentrations of dissolved Al and Fe to <1.0 mg L(-)(1).


Subject(s)
Acids/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Animals , Confounding Factors, Epidemiologic , Fresh Water , Hydrogen-Ion Concentration
3.
Environ Manage ; 39(2): 213-25, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17160511

ABSTRACT

When native grassland catchments are converted to pasture, the main effects on stream physicochemistry are usually related to increased nutrient concentrations and fine-sediment input. We predicted that increasing nutrient concentrations would produce a subsidy-stress response (where several ecological metrics first increase and then decrease at higher concentrations) and that increasing sediment cover of the streambed would produce a linear decline in stream health. We predicted that the net effect of agricultural development, estimated as percentage pastoral land cover, would have a nonlinear subsidy-stress or threshold pattern. In our suite of 21 New Zealand streams, epilithic algal biomass and invertebrate density and biomass were higher in catchments with a higher proportion of pastoral land cover, responding mainly to increased nutrient concentration. Invertebrate species richness had a linear, negative relationship with fine-sediment cover but was unrelated to nutrients or pastoral land cover. In accord with our predictions, several invertebrate stream health metrics (Ephemeroptera-Plecoptera-Trichoptera density and richness, New Zealand Macroinvertebrate Community Index, and percent abundance of noninsect taxa) had nonlinear relationships with pastoral land cover and nutrients. Most invertebrate health metrics usually had linear negative relationships with fine-sediment cover. In this region, stream health, as indicated by macroinvertebrates, primarily followed a subsidy-stress pattern with increasing pastoral development; management of these streams should focus on limiting development beyond the point where negative effects are seen.


Subject(s)
Environmental Health , Fresh Water , Animals , Geologic Sediments , Invertebrates
4.
Environ Pollut ; 130(2): 287-99, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15158041

ABSTRACT

The influence of land use on water quality in streams is scale-dependent and varies in time and space. In this study, land cover patterns and stocking rates were used as measures of agricultural development in two pasture and one native grassland catchment in New Zealand and were related to water quality in streams of various orders. The amount of pasture per subcatchment correlated well to total nitrogen and nitrate in one catchment and turbidity and total phosphorous in the other catchment. Stocking rates were only correlated to total phosphorous in one pasture catchment but showed stronger correlations to ammonium, total phosphorous and total nitrogen in the other pasture catchment. Winter and spring floods were significant sources of nutrients and faecal coliforms from one of the pasture catchments into a wetland complex. Nutrient and faecal coliform concentrations were better predicted by pastural land cover in fourth-order than in second-order streams. This suggests that upstream land use is more influential in larger streams, while local land use and other factors may be more important in smaller streams. These temporal and spatial scale effects indicate that water-monitoring schemes need to be scale-sensitive.


Subject(s)
Agriculture/methods , Fresh Water/analysis , Water Pollution/analysis , Animal Feed/microbiology , Animals , Cattle , Ecosystem , Enterobacteriaceae/isolation & purification , Environmental Monitoring/methods , Feces/microbiology , New Zealand , Nitrates/analysis , Nitrogen/analysis , Phosphorus/analysis , Seasons , Sheep , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...