Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Mass Spectrom Rev ; 42(5): 1508-1534, 2023.
Article in English | MEDLINE | ID: mdl-34435381

ABSTRACT

Diagnostic gas-phase ion-molecule reactions serve as a powerful alternative to collision-activated dissociation for the structural elucidation of analytes when using tandem mass spectrometry. The use of such ion-molecule reactions has been demonstrated to provide a robust tool for the identification of specific functional groups in unknown ionized analytes, differentiation of isomeric ions, and classification of unknown ions into different compound classes. During the past several years, considerable efforts have been dedicated to exploring various reagents and reagent inlet systems for functional-group selective ion-molecule reactions with protonated analytes. This review provides a comprehensive coverage of literature since 2006 on general and predictable functional-group selective ion-molecule reactions of protonated analytes, including simple monofunctional and complex polyfunctional analytes, whose mechanisms have been explored computationally. Detection limits for experiments involving high-performance liquid chromatography coupled with tandem mass spectrometry based on ion-molecule reactions and the application of machine learning to predict diagnostic ion-molecule reactions are also discussed.

3.
Anal Chem ; 91(17): 11388-11396, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31381321

ABSTRACT

Glucuronidation, a common phase II biotransformation reaction, is one of the major in vitro and in vivo metabolism pathways of xenobiotics. In this process, glucuronic acid is conjugated to a drug or a drug metabolite via a carboxylic acid, a hydroxy, or an amino group to form acyl-, O-, and/or N-glucuronide metabolites, respectively. This process is traditionally thought to be a detoxification pathway. However, some acyl-glucuronides react with biomolecules in vivo, which may result in immune-mediated idiosyncratic drug toxicity (IDT). In order to avoid this, one may attempt in early drug discovery to modify the lead compounds in such a manner that they then have a lower probability of forming reactive acyl-glucuronide metabolites. Because most drugs or drug candidates bear multiple functionalities, e.g., hydroxy, amino, and carboxylic acid groups, glucuronidation can occur at any of those. However, differentiation of isomeric acyl-, N-, and O-glucuronide derivatives of drugs is challenging. In this study, gas-phase ion-molecule reactions between deprotonated glucuronide metabolites and BF3 followed by collision-activated dissociation (CAD) in a linear quadrupole ion trap mass spectrometer were demonstrated to enable the differentiation of acyl-, N-, and O-glucuronides. Only deprotonated N-glucuronides and deprotonated, migrated acyl-glucuronides form the two diagnostic product ions: a BF3 adduct that has lost two HF molecules, [M - H + BF3 - 2HF]-, and an adduct formed with two BF3 molecules that has lost three HF molecules, [M - H + 2BF3 - 3HF]-. These product ions were not observed for deprotonated O-glucuronides and unmigrated, deprotonated acyl-glucuronides. Upon CAD of the [M - H + 2BF3 - 3HF]- product ion, a diagnostic fragment ion is formed via the loss of 2-fluoro-1,3,2-dioxaborale (MW of 88 Da) only in the case of deprotonated, migrated acyl-glucuronides. Therefore, this method can be used to unambiguously differentiate acyl-, N-, and O-glucuronides. Further, coupling this methodology with HPLC enables the differentiation of unmigrated 1-ß-acyl-glucuronides from the isomeric acyl-glucuronides formed upon acyl migration. Quantum chemical calculations at the M06-2X/6-311++G(d,p) level of theory were employed to probe the mechanisms of the reactions of interest.


Subject(s)
Glucuronides/analysis , Tandem Mass Spectrometry/methods , Acylation , Biotransformation , Boranes/chemistry , Glucuronides/chemistry , Glucuronides/metabolism , Isomerism , Quantum Theory , Xenobiotics/metabolism
5.
Anal Chem ; 90(15): 9426-9433, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29984992

ABSTRACT

Isomeric O- and N-glucuronides are common drug metabolites produced in phase II of drug metabolism. Distinguishing these isomers by using common analytical techniques has proven challenging. A tandem mass spectrometric method based on gas-phase ion/molecule reactions of deprotonated glucuronide drug metabolites with trichlorosilane (HSiCl3) in a linear quadrupole ion trap mass spectrometer is reported here to readily enable differentiation of the O- and N-isomers. The major product ion observed upon reactions of HSiCl3 with deprotonated N-glucuronides is a diagnostic HSiCl3 adduct that has lost two HCl molecules ([M - H + HSiCl3 - 2HCl]-). This product ion was not observed for deprotonated O-glucuronides. Reaction mechanisms were explored with quantum chemical calculations at the M06-2X/6-311++G(d,p) level of theory.


Subject(s)
Glucuronides/metabolism , Pharmaceutical Preparations/metabolism , Tandem Mass Spectrometry/methods , Chromatography, High Pressure Liquid/methods , Glucuronides/chemistry , Isomerism , Pharmaceutical Preparations/chemistry , Protons , Silanes/chemistry , Silanes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...