Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Genet ; 12: 742808, 2021.
Article in English | MEDLINE | ID: mdl-34868214

ABSTRACT

Theileria annulata, which causes tropical theileriosis, is a major impediment to improving cattle production in Sudan. Tropical theileriosis disease is prevalent in the north and central regions of Sudan. Outbreaks of the disease have been observed outside the known endemic areas, in east and west regions of the country, due to changes in tick vector distribution and animal movement. A live schizont attenuated vaccination based on tissue culture technology has been developed to control the disease. The parasite in the field as well as the vaccine strain need to be genotyped before the vaccinations are practiced, in order to be able to monitor any breakthrough or breakdown, if any, after the deployment of the vaccine in the field. Nine microsatellite markers were used to genotype 246 field samples positive for T. annulata DNA and the vaccine strain. North and central populations have a higher multiplicity of infection than east and west populations. The examination of principal components showed two sub-structures with a mix of all four populations in both clusters and the vaccine strain used being aligned with left-lower cluster. Only the north population was in linkage equilibrium, while the other populations were in linkage disequilibrium, and linkage equilibrium was found when all samples were regarded as single population. The genetic identity of the vaccine and field samples was 0.62 with the north population and 0.39 with west population. Overall, genetic investigations of four T. annulata populations in Sudan revealed substantial intermixing, with only two groups exhibiting regional origin independence. In the four geographically distant regions analyzed, there was a high level of genetic variation within each population. The findings show that the live schizont attenuated vaccine, Atbara strain may be acceptable for use in all Sudanese regions where tropical theileriosis occurs.

2.
BMC Vet Res ; 17(1): 365, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34839816

ABSTRACT

BACKGROUND: African trypanosomiasis, caused by protozoa of the genus Trypanosoma and transmitted by the tsetse fly, is a serious parasitic disease of humans and animals. Reliable data on the vector distribution, feeding preference and the trypanosome species they carry is pertinent to planning sustainable control strategies. METHODOLOGY: We deployed 109 biconical traps in 10 villages in two districts of northwestern Uganda to obtain information on the apparent density, trypanosome infection status and blood meal sources of tsetse flies. A subset (272) of the collected samples was analyzed for detection of trypanosomes species and sub-species using a nested PCR protocol based on primers amplifying the Internal Transcribed Spacer (ITS) region of ribosomal DNA. 34 blood-engorged adult tsetse midguts were analyzed for blood meal sources by sequencing of the mitochondrial cytochrome c oxidase 1 (COI) and cytochrome b (cytb) genes. RESULTS: We captured a total of 622 Glossina fuscipes fuscipes tsetse flies (269 males and 353 females) in the two districts with apparent density (AD) ranging from 0.6 to 3.7 flies/trap/day (FTD). 10.7% (29/272) of the flies were infected with one or more trypanosome species. Infection rate was not significantly associated with district of origin (Generalized linear model (GLM), χ2 = 0.018, P = 0.895, df = 1, n = 272) and sex of the fly (χ2 = 1.723, P = 0.189, df = 1, n = 272). However, trypanosome infection was highly significantly associated with the fly's age based on wing fray category (χ2 = 22.374, P < 0.001, df = 1, n = 272), being higher among the very old than the young tsetse. Nested PCR revealed several species of trypanosomes: T. vivax (6.62%), T. congolense (2.57%), T. brucei and T. simiae each at 0.73%. Blood meal analyses revealed five principal vertebrate hosts, namely, cattle (Bos taurus), humans (Homo sapiens), Nile monitor lizard (Varanus niloticus), African mud turtle (Pelusios chapini) and the African Savanna elephant (Loxodonta africana). CONCLUSION: We found an infection rate of 10.8% in the tsetse sampled, with all infections attributed to trypanosome species that are causative agents for AAT. However, more verification of this finding using large-scale passive and active screening of human and tsetse samples should be done. Cattle and humans appear to be the most important tsetse hosts in the region and should be considered in the design of control interventions.


Subject(s)
Insect Vectors/parasitology , Trypanosoma/isolation & purification , Trypanosomiasis, African/epidemiology , Tsetse Flies/parasitology , Age Factors , Animals , Cattle , Elephants , Female , Humans , Lizards , Male , Trypanosoma/classification , Trypanosoma/genetics , Trypanosomiasis, African/transmission , Trypanosomiasis, African/veterinary , Turtles , Uganda
3.
Transbound Emerg Dis ; 67 Suppl 1: 99-107, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174038

ABSTRACT

Theileria parva is a tick-transmitted apicomplexan protozoan parasite that infects lymphocytes of cattle and African Cape buffalo (Syncerus caffer), causing a frequently fatal disease of cattle in eastern, central and southern Africa. A live vaccination procedure, known as infection and treatment method (ITM), the most frequently used version of which comprises the Muguga, Serengeti-transformed and Kiambu 5 stocks of T. parva, delivered as a trivalent cocktail, is generally effective. However, it does not always induce 100% protection against heterologous parasite challenge. Knowledge of the genetic diversity of T. parva in target cattle populations is therefore important prior to extensive vaccine deployment. This study investigated the extent of genetic diversity within T. parva field isolates derived from Ankole (Bos taurus) cattle in south-western Uganda using 14 variable number tandem repeat (VNTR) satellite loci and the sequences of two antigen-encoding genes that are targets of CD8+T-cell responses induced by ITM, designated Tp1 and Tp2. The findings revealed a T. parva prevalence of 51% confirming endemicity of the parasite in south-western Uganda. Cattle-derived T. parva VNTR genotypes revealed a high degree of polymorphism. However, all of the T. parva Tp1 and Tp2 alleles identified in this study have been reported previously, indicating that they are widespread geographically in East Africa and highly conserved.


Subject(s)
Antigens, Protozoan/genetics , Buffaloes/parasitology , Cattle Diseases/parasitology , Minisatellite Repeats/genetics , Protozoan Vaccines/immunology , Theileria parva/genetics , Theileriasis/parasitology , Alleles , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Female , Genetic Variation , Genotype , Male , Polymorphism, Genetic/genetics , Theileria parva/immunology , Theileriasis/epidemiology , Theileriasis/prevention & control , Ticks/parasitology , Uganda/epidemiology , Vaccines, Attenuated/immunology
4.
PLoS One ; 13(10): e0204047, 2018.
Article in English | MEDLINE | ID: mdl-30303978

ABSTRACT

Theileria parva is a protozoan parasite transmitted by the brown ear tick Rhipicephalus appendiculatus that causes East Coast fever (ECF) in cattle, resulting in substantial economic losses in the regions of southern, eastern and central Africa. The schizont form of the parasite transforms the bovine host lymphocytes into actively proliferating cancer-like cells. However, how T. parva causes bovine host cells to proliferate and maintain a cancerous phenotype following infection is still poorly understood. On the other hand, current efforts to develop improved vaccines have identified only a few candidate antigens. In the present paper, we report the first comparative transcriptomic analysis throughout the course of T. parva infection. We observed that the development of sporoblast into sporozoite and then the establishment in the host cells as schizont is accompanied by a drastic increase of upregulated genes in the schizont stage of the parasite. In contrast, the ten highest gene expression values occurred in the arthropod vector stages. A comparative analysis showed that 2845 genes were upregulated in both sporozoite and schizont stages compared to the sporoblast. In addition, 647 were upregulated only in the sporozoite whereas 310 were only upregulated in the schizont. We detected low p67 expression in the schizont stage, an unexpected finding considering that p67 has been reported as a sporozoite stage-specific gene. In contrast, we found that transcription of p67 was 20 times higher in the sporoblast than in the sporozoite. Using the expression profiles of recently identified candidate vaccine antigens as a benchmark for selection for novel potential vaccine candidates, we identified three genes with expression similar to p67 and several other genes similar to Tp1-Tp10 schizont vaccine antigens. We propose that the antigenicity or chemotherapeutic potential of this panel of new candidate antigens be further investigated. Structural comparisons of the transcripts generated here with the existing gene models for the respective loci revealed indels. Our findings can be used to improve the structural annotation of the T. parva genome, and the identification of alternatively spliced transcripts.


Subject(s)
Antigens, Protozoan/genetics , Gene Expression Profiling/methods , Theileria parva/growth & development , Theileriasis/parasitology , Animals , Antigens, Protozoan/immunology , Cattle , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Schizonts/genetics , Schizonts/immunology , Sequence Analysis, RNA/methods , Sporozoites/genetics , Sporozoites/immunology , Theileria parva/genetics , Theileria parva/immunology , Up-Regulation
5.
Ticks Tick Borne Dis ; 9(4): 806-813, 2018 05.
Article in English | MEDLINE | ID: mdl-29534988

ABSTRACT

Theileria parva is a parasitic protozoan that causes East Coast fever (ECF), an economically important disease of cattle in eastern, central and southern Africa. In South Sudan, ECF is considered a major constraint for livestock development in regions where the disease is endemic. To obtain insights into the dynamics of T. parva in South Sudan, population genetic analysis was performed. Out of the 751 samples included in this study, 178 blood samples were positive for T. parva by species-specific PCR, were collected from cattle from four regions in South Sudan (Bor = 62; Juba = 45; Kajo keji = 41 and Yei = 30) were genotyped using 14 microsatellite markers spanning the four chromosomes. The T. parva Muguga strain was included in the study as a reference. Linkage disequilibrium was evident when populations from the four regions were treated as a single entity, but, when populations were analyzed separately, linkage disequilibrium was observed in Bor, Juba and Kajo keji. Juba region had a higher multiplicity of infection than the other three regions. Principal components analysis revealed a degree of sub-structure between isolates from each region, suggesting that populations are partially distinct, with genetic exchange and gene flow being limited between parasites in the four geographically separated populations studied. Panmixia was observed within individual populations. Overall T. parva population genetic analyses of four populations in South Sudan exhibited a low level of genetic exchange between the populations, but a high level of genetic diversity within each population.


Subject(s)
Genetic Variation , Theileria parva/genetics , Theileriasis/epidemiology , Animals , Cattle/parasitology , Gene Flow , Genotype , Genotyping Techniques , Linkage Disequilibrium , Microsatellite Repeats , Polymerase Chain Reaction , South Sudan/epidemiology , Theileria parva/isolation & purification , Theileriasis/blood , Theileriasis/parasitology
6.
PLoS One ; 12(2): e0171426, 2017.
Article in English | MEDLINE | ID: mdl-28231338

ABSTRACT

East Coast fever (ECF), caused by Theileria parva infection, is a frequently fatal disease of cattle in eastern, central and southern Africa, and an emerging disease in South Sudan. Immunization using the infection and treatment method (ITM) is increasingly being used for control in countries affected by ECF, but not yet in South Sudan. It has been reported that CD8+ T-cell lymphocytes specific for parasitized cells play a central role in the immunity induced by ITM and a number of T. parva antigens recognized by parasite-specific CD8+ T-cells have been identified. In this study we determined the sequence diversity among two of these antigens, Tp1 and Tp2, which are under evaluation as candidates for inclusion in a sub-unit vaccine. T. parva samples (n = 81) obtained from cattle in four geographical regions of South Sudan were studied for sequence polymorphism in partial sequences of the Tp1 and Tp2 genes. Eight positions (1.97%) in Tp1 and 78 positions (15.48%) in Tp2 were shown to be polymorphic, giving rise to four and 14 antigen variants in Tp1 and Tp2, respectively. The overall nucleotide diversity in the Tp1 and Tp2 genes was π = 1.65% and π = 4.76%, respectively. The parasites were sampled from regions approximately 300 km apart, but there was limited evidence for genetic differentiation between populations. Analyses of the sequences revealed limited numbers of amino acid polymorphisms both overall and in residues within the mapped CD8+ T-cell epitopes. Although novel epitopes were identified in the samples from South Sudan, a large number of the samples harboured several epitopes in both antigens that were similar to those in the T. parva Muguga reference stock, which is a key component in the widely used live vaccine cocktail.


Subject(s)
Antigens, Protozoan/immunology , Cattle/parasitology , Protozoan Vaccines/immunology , Theileria parva/immunology , Theileriasis/immunology , Theileriasis/parasitology , Alleles , Amino Acid Sequence , Animals , Antigenic Variation , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , CD8-Positive T-Lymphocytes/immunology , Cattle/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Genes, Protozoan , Genetic Variation , Phylogeny , Polymorphism, Genetic , Sequence Alignment , Theileria parva/genetics , Theileriasis/prevention & control , Vaccines, Attenuated/immunology
7.
Article in English | MEDLINE | ID: mdl-28105330

ABSTRACT

BACKGROUND: Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. METHODS: Salmonella isolates with reduced susceptibility to beta-lactams (n = 43) were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29) for mutations in the quinolone resistance determining region (QRDR) as well as plasmid mediated quinolone resistance (PMQR) genes using PCR and sequencing. RESULTS: Beta-lactamase genes (bla) were detected in 34 (79.1%) of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7%) of the isolates, majority being TEM-1 (24, 72.7%) followed by TEM-57, (10, 30.3%). The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly) as well as parC (Thr57-Ser + Ser80-Ile) subunits of the quinolone resistance determining region (QRDR) were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4) and Ser83-Tyr (n = 1) were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe) in the parC gene. Plasmid mediated quinolone resistance (PMQR) genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6%) were also resistant to at least one of the beta-lactam antimicrobials. CONCLUSION: Acquisition of blaTEM was the principal beta-lactamase resistance mechanism and mutations within QRDR of gyrA and parC were the primary mechanism for resistance to quinolones. Further study on extended spectrum beta-lactamase and quinolone resistance mechanisms in other gram negative pathogens is recommended.

8.
Vet Parasitol ; 224: 20-26, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27270385

ABSTRACT

A population genetic study of Theileria parva was conducted on 103 cattle and 30 buffalo isolates from Kibaha, Lushoto, Njombe Districts and selected National parks in Tanzania. Bovine blood samples were collected from these study areas and categorized into 5 populations; Buffalo, Cattle which graze close to buffalo, Kibaha, Lushoto and Njombe. Samples were tested by nested PCR for T. parva DNA and positives were compared for genetic diversity to the T. parva Muguga vaccine reference strain, using 3micro and 11 minisatellite markers selected from all 4 chromosomes of the parasite genome. The diversity across populations was determined by the mean number of different alleles, mean number of effective alleles, mean number of private allele and expected heterozygosity. The mean number of allele unique to populations for Cattle close to buffalo, Muguga, Njombe, Kibaha, Lushoto and Buffalo populations were 0.18, 0.24, 0.63, 0.71, 1.63 and 3.37, respectively. The mean number of different alleles ranged from 6.97 (Buffalo) to 0.07 (Muguga). Mean number of effective alleles ranged from 4.49 (Buffalo) to 0.29 (Muguga). The mean expected heterozygosity were 0.07 0.29, 0.45, 0.48, 0.59 and 0.64 for Muguga, cattle close to buffalo, Kibaha, Njombe, Lushoto and Buffalo populations, respectively. The Buffalo and Lushoto isolates possessed a close degree of diversity in terms of mean number of different alleles, effective alleles, private alleles and expected heterozygosity. The study revealed more diversity in buffalo isolates and further studies are recommended to establish if there is sharing of parasites between cattle and buffaloes which may affect the effectiveness of the control methods currently in use.


Subject(s)
Buffaloes , Cattle , Genetics, Population , Microsatellite Repeats/genetics , Minisatellite Repeats/genetics , Theileria parva/genetics , Theileriasis/parasitology , Animals , Buffaloes/parasitology , Genetic Variation , Tanzania/epidemiology , Theileriasis/epidemiology
9.
Arch Virol ; 161(8): 2169-82, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27193022

ABSTRACT

Viral gastroenteritis is a major public health problem worldwide. In Ethiopia, very limited studies have been done on the epidemiology of enteropathogenic viruses. The aim of this study was to detect and characterize noroviruses (NoVs) and sapoviruses (SaVs) from acute gastroenteritis patients of all ages. Fecal samples were collected from diarrheic patients (n = 213) in five different health centers in Addis Ababa during June-September 2013. The samples were screened for caliciviruses by reverse transcription polymerase chain reaction (RT-PCR) using universal and genogroup-specific primer pairs. Phylogenetic analyses were conducted using the sequences of the PCR products. Of the clinical samples, 25.3 % and 4.2 % were positive for NoV and SaV RNA, respectively. Among the norovirus positives, 22 were sequenced further, and diverse norovirus strains were identified: GI (n = 4), GII (n = 17) and GIV (n = 1). Most strains were GII (n = 17/22: 77.2 %), which were further divided into three different genotypes (GII.4, GII.12/GII.g recombinant-like and GII.17), with GII.17 being the dominant (7/17) strain detected. GI noroviruses, in particular GI.4 (n = 1), GI.5 (n = 2) and GI.8 (n = 1), were also detected and characterized. The GIV strain detected is the first from East Africa. The sapoviruses sequenced were also the first reported from Ethiopia. Collectively, this study showed the high burden and diversity of noroviruses and circulation of sapoviruses in diarrheic patients in Ethiopia. Continued surveillance to assess their association with diarrhea is needed to define their epidemiology, disease burden, and impact on public health.


Subject(s)
Caliciviridae Infections/virology , Gastroenteritis/virology , Norovirus/isolation & purification , Sapovirus/isolation & purification , Adolescent , Adult , Aged , Caliciviridae Infections/epidemiology , Child , Child, Preschool , Diarrhea/epidemiology , Diarrhea/virology , Ethiopia/epidemiology , Feces/virology , Female , Gastroenteritis/epidemiology , Genotype , Humans , Infant , Male , Middle Aged , Norovirus/classification , Norovirus/genetics , Phylogeny , Prevalence , Sapovirus/classification , Sapovirus/genetics , Young Adult
10.
J Econ Entomol ; 108(1): 20-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-26470099

ABSTRACT

Thrips have been recognized as primary vectors of tomato spotted wilt virus (TSWV) with Frankliniella occidentalis (Pergande) reported as the most important and efficient vector, while other species such as Thrips tabaci Lindeman also include populations that can vector the virus. A study was undertaken to establish the diversity of thrips and presence of vectors for TSWV in four major tomato production areas in Kenya. The cytochrome oxidase 1 (CO1) gene was used to generate sequences from thrips samples collected from tomatoes and weeds, and phylogenetic analysis done to establish the variation within potential vector populations. Ceratothripoides brunneus Bagnall was the predominant species of thrips in all areas. F. occidentalis and T. tabaci were abundant in Nakuru, Kirinyaga, and Loitokitok but not detected at Bungoma. Other vectors of tospoviruses identified in low numbers were Frankliniella schultzei (Trybom) and Scirtothrips dorsalis Hood. Variation was observed in T. tabaci, F. occidentalis, and F. schultzei. Kenyan specimens of T. tabaci from tomato belonged to the arrhenotokous group, while those of F. occidentalis clustered with the Western flower thrips G group. The detection of RNA of TSWV in both of these species of thrips supported the role they play as vectors. The study has demonstrated the high diversity of thrips species in tomato production and the occurrence of important vectors of TSWV and other tospoviruses.


Subject(s)
Biodiversity , Insect Vectors/genetics , Solanum lycopersicum/virology , Thysanoptera/genetics , Tospovirus , Animals , Host Specificity , Insect Vectors/virology , Kenya , Thysanoptera/virology
11.
BMC Vet Res ; 11: 255, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26449544

ABSTRACT

BACKGROUND: Livestock trypanosomiasis, transmitted mainly by tsetse flies of the genus Glossina is a major constraint to livestock health and productivity in the sub-Saharan Africa. Knowledge of the prevalence and intensity of trypanosomiasis is important in understanding the epidemiology of the disease. The objectives of this study were to (a) assess the prevalence and intensity of trypanosome infections in cattle, and (b) to investigate the reasons for the heterogeneity of the disease in the tsetse infested districts of Amuru and Nwoya, northern Uganda. METHODS: A cross-sectional study was conducted from September, 2011 to January, 2012. Blood samples were collected from 816 cattle following jugular vein puncture, and screened for trypanosomes by HCT and ITS-PCR. A Pearson chi-squared test and logistic regression analyses were performed to determine the association between location, age, sex, and prevalence of trypanosome infections. RESULTS: Out of the 816 blood samples examined, 178 (22 %) and 338 (41 %) tested positive for trypanosomiasis by HCT and ITS-PCR, respectively. Trypanosoma vivax infection accounted for 77 % of infections detected by ITS-PCR, T. congolense (16 %), T. brucei s.l (4 %) and mixed (T. vivax/ T. congolense/T.brucei) infections (3 %). The risk of trypanosome infection was significantly associated with cattle age (χ (2) = 220.4, df = 3, P < 0.001). The highest proportions of infected animals were adult males (26.7 %) and the least infected were the less than one year old calves (2.0 %). In addition, the risk of trypanosome infection was significantly associated with sex (χ (2) = 16.64, df = 1, P < 0.001), and males had a significantly higher prevalence of infections (26.8 %) than females (14.6 %). CONCLUSION: Our results indicate that the prevalence and intensity of trypanosome infections are highly heterogeneous being associated with cattle age, location and sex.


Subject(s)
Trypanosomiasis, Bovine/epidemiology , Age Factors , Animals , Cattle/parasitology , Cross-Sectional Studies , Female , Male , Prevalence , Risk Factors , Severity of Illness Index , Sex Factors , Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma vivax , Trypanosomiasis, African/epidemiology , Trypanosomiasis, African/parasitology , Trypanosomiasis, African/veterinary , Trypanosomiasis, Bovine/parasitology , Uganda/epidemiology
12.
PLoS One ; 10(6): e0128040, 2015.
Article in English | MEDLINE | ID: mdl-26053064

ABSTRACT

INTRODUCTION: East Coast fever, a devastating disease of cattle, can be controlled partially by vaccination with live T. parva sporozoites. The antigens responsible for conferring immunity are not fully characterized. Recently it was shown that the P. falciparum immunodominant protein UB05 is highly conserved in T. parva, the causative agent of East Coast fever. The aim of the present investigation was to determine the role of the homologue TpUB05 in protective immunity to East Coast fever. METHODS: The cloning, sequencing and expression of TpUB05 were done according to standard protocols. Bioinformatics analysis of TpUB05 gene was carried out using algorithms found in the public domain. Polyclonal antiserum against recombinant TpUB05 were raised in rabbits and used for further analysis by Western blotting, ELISA, immunolocalization and in vitro infection neutralization assay. The ability of recombinant TpUB05 (r-TpUB05) to stimulate bovine PBMCs ex-vivo to produce IFN-γ or to proliferate was tested using ELISpot and [3H]-thymidine incorporation assays, respectively. RESULTS: All the 20 cattle immunised by the infection and treatment method (ITM) developed significantly higher levels of TpUB05 specific antibodies (p<0.0001) compared to the non-vaccinated ones. Similarly, r-TpUB05 highly stimulated bovine PMBCs from 8/12 (67%) of ITM-immunized cattle tested to produce IFN-γ and proliferate (p< 0.029) as compared to the 04 naїve cattle included as controls. Polyclonal TpUB05 antiserum raised against r-TpUB05 also marginally inhibited infection (p < 0.046) of bovine PBMCs by T. parva sporozoites. In further experiments RT-PCR showed that the TpUB05 gene is expressed by the parasite. This was confirmed by immunolocalization studies which revealed TpUB05 expression by schizonts and piroplasms. Bioinformatics analysis also revealed that this antigen possesses two transmembrane domains, a N-glycosylation site and several O-glycosylation sites. CONCLUSION: It was concluded that TpUB05 is a potential marker of protective immunity in ECF worth investigating further.


Subject(s)
Immunity , Immunodominant Epitopes/immunology , Protozoan Proteins/chemistry , Sequence Homology, Amino Acid , Theileriasis/immunology , Theileriasis/parasitology , Vaccination , Amino Acid Sequence , Animals , Antibody Formation/immunology , Biomarkers/metabolism , Blotting, Western , Cattle , Cell Proliferation , Cloning, Molecular , Computational Biology , Enzyme-Linked Immunospot Assay , Male , Molecular Sequence Data , Neutralization Tests , Phylogeny , Plasmodium falciparum , Protozoan Proteins/immunology , Sequence Alignment , Sporozoites/physiology , T-Lymphocytes/cytology , T-Lymphocytes/immunology
14.
J Wildl Dis ; 51(1): 137-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25380362

ABSTRACT

The role of equine piroplasmosis as a factor in the population decline of the Grevy's zebra is not known. We determined the prevalence of Babesia caballi and Theileria equi in cograzing Grevy's zebras (Equus grevyi) and donkeys (Equus africanus asinus) in northern Kenya and identified the associated tick vectors. Blood samples were taken from 71 donkeys and 16 Grevy's zebras from March to May 2011. A nested PCR reaction using 18s ribosomal (r)RNA primers on 87 blood spots showed 72% (51/71; 95% confidence interval [CI] 60.4-81.0%) of donkeys and 100% (16/16; 95% CI, 77.3-100%) of Grevy's zebras were T. equi positive. No samples were positive for B. caballi. Sequence comparison using the National Center for Biotechnology Information's basic local alignment search tool identified homologous 18s rRNA sequences with a global geographic spread. The T. equi-derived sequences were evaluated using Bayesian approaches with independent Metropolis-coupled Markov chain Monte Carlo runs. The sequences clustered with those found in Sudan, Croatia, Mongolia, and the US, with statistical support greater than 80% for the two main clades. Hyalomma tick species were found on both donkeys and Grevy's zebras, whereas Rhipicephalus pulchellus was found exclusively on Grevy's zebras and Hyalomma marginatum rupfipes on donkeys. The prevalence of T. equi was 100% in Grevy's zebras and 72% in donkeys with common tick vectors identified. Our results suggest that donkeys and Grevy's zebras can be asymptomatic carriers and that piroplasmosis is endemic in the study area.


Subject(s)
Babesia/isolation & purification , Babesiosis/epidemiology , Equidae , Theileria/isolation & purification , Theileriasis/parasitology , Ticks/physiology , Animals , Female , Kenya/epidemiology , Male , Phylogeny , Theileria/genetics , Theileriasis/epidemiology , Tick Infestations/epidemiology , Tick Infestations/parasitology , Tick Infestations/veterinary , Ticks/microbiology , Ticks/parasitology
15.
PLoS One ; 9(12): e115576, 2014.
Article in English | MEDLINE | ID: mdl-25541981

ABSTRACT

A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2-) and S(2-), 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU)--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.


Subject(s)
Bacteria/classification , Bacteria/genetics , Wastewater/microbiology , Bacteria/isolation & purification , Ethiopia , Gene Library , Molecular Sequence Data , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Water Purification/methods , Wetlands
16.
Arch Virol ; 159(6): 1313-9, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24327095

ABSTRACT

In this study, swine fecal specimens (n = 251) collected from nursing and weaned piglets raised under smallholder production systems were screened for the presence of kobuviruses by RT-PCR. Porcine kobuviruses were detected in 13.1 % (33/251) of the samples. We demonstrated that porcine kobuvirus infections exist in indigenous pigs in Kenya and Uganda and that the prevalence was higher in young piglets than older pigs: nursing piglets (15 %), post-weaning (3-month-old) pigs (17 %), 4-month-old pigs (10 %). Genetic analysis of the partial RNA-dependent RNA polymerase (RdRp) region (690 nt) revealed that kobuviruses circulating in East Africa are diverse, sharing nucleotide sequence identities ranging from 89.7 to 99.1 % and 88 to 92.3 % among them and with known porcine kobuviruses, respectively. The nucleotide sequence identities between our kobuvirus strains and those of human, bovine and canine kobuviruses were 69.4-70.7 %, 73.1-74.4 % and 67-70.7 %, respectively. Additionally, upon sequencing selected samples that showed consistent 720-bp RT-PCR bands while using the same primer set, we detected porcine astroviruses in our samples belonging to type 2 and type 3 mamastroviruses. To our knowledge, this study reports the first detection and molecular analysis of both porcine kobuviruses and astroviruses in an African region. Further studies are required to determine the role of these viruses in gastrointestinal infections of pigs in this region and to determine the genetic diversity of the circulating strains to develop accurate diagnostic tools and implement appropriate control strategies.


Subject(s)
Astroviridae Infections/veterinary , Astroviridae/isolation & purification , Kobuvirus/isolation & purification , Picornaviridae Infections/veterinary , Swine Diseases/virology , Africa, Eastern/epidemiology , Animals , Astroviridae Infections/epidemiology , Astroviridae Infections/virology , Feces/virology , Genetic Variation , Molecular Sequence Data , Picornaviridae Infections/epidemiology , Picornaviridae Infections/virology , Prevalence , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology , Swine , Swine Diseases/epidemiology
17.
Trop Anim Health Prod ; 44 Suppl 1: S25-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22797974

ABSTRACT

A total of 1,734 cattle faecal samples from 296 dairy-keeping households were collected from urban settings in Nairobi, Kenya. Modified Ziehl-Neelsen staining method and an immunofluorescence assay were used to identify those samples with Cryptosporidium oocyst infection. Oocysts from positive faecal samples were isolated by Sheather's sucrose flotation method and picked from the concentrate using cover slips. Genomic DNA was extracted from 124 of the faecal samples that were positive for Cryptosporidium and was used as template for nested PCR of the 18S rRNA gene. Twenty-five samples (20 %) were PCR-positive for Cryptosporidium, and 24 of the PCR products were successfully cloned and sequenced. Sequence and phylogenetic analysis identified 17 samples (68 %) as Cryptosporidium parvum-like, four samples (16 %) as Cryptosporidium ryanae, three samples (12 %) as Cryptosporidium andersoni and one sample (4 %) as Cryptosporidium hominis. To the best of our knowledge, this is the first genotyping study to report C. parvum-like, C. andersoni and C. hominis in cattle from Kenya. The results of this study show Cryptosporidium infections in calves and cattle may be potential zoonotic reservoirs of the parasite that infects humans.


Subject(s)
Cattle Diseases/parasitology , Cryptosporidiosis/veterinary , Cryptosporidium/classification , Cryptosporidium/genetics , RNA, Protozoan/genetics , Zoonoses/parasitology , Animals , Cattle , Cattle Diseases/epidemiology , Cloning, Molecular , Coinfection/epidemiology , Coinfection/veterinary , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/parasitology , Communicable Diseases, Emerging/veterinary , Cryptosporidiosis/epidemiology , Cryptosporidiosis/parasitology , Cryptosporidium/isolation & purification , Cryptosporidium parvum/classification , Cryptosporidium parvum/genetics , Cryptosporidium parvum/isolation & purification , Feces/parasitology , Female , Kenya/epidemiology , Male , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 18S/genetics , Sequence Analysis, RNA , Urban Health , Zoonoses/epidemiology
18.
PLoS One ; 6(4): e19015, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21559495

ABSTRACT

BACKGROUND: Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. CONCLUSIONS/SIGNIFICANCE: The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/parasitology , Theileria parva/genetics , Theileriasis/parasitology , Animals , Buffaloes , Cattle , Cell Line , Epitopes/chemistry , Evolution, Molecular , Genetic Variation , Genotype , Open Reading Frames , Sequence Analysis, DNA , Species Specificity
19.
Proc Natl Acad Sci U S A ; 103(9): 3286-91, 2006 Feb 28.
Article in English | MEDLINE | ID: mdl-16492763

ABSTRACT

East Coast fever, caused by the tick-borne intracellular apicomplexan parasite Theileria parva, is a highly fatal lymphoproliferative disease of cattle. The pathogenic schizont-induced lymphocyte transformation is a unique cancer-like condition that is reversible with parasite removal. Schizont-infected cell-directed CD8(+) cytotoxic T lymphocytes (CTL) constitute the dominant protective bovine immune response after a single exposure to infection. However, the schizont antigens targeted by T. parva-specific CTL are undefined. Here we show the identification of five candidate vaccine antigens that are the targets of MHC class I-restricted CD8(+) CTL from immune cattle. CD8(+) T cell responses to these antigens were boosted in T. parva-immune cattle resolving a challenge infection and, when used to immunize naïve cattle, induced CTL responses that significantly correlated with survival from a lethal parasite challenge. These data provide a basis for developing a CTL-targeted anti-East Coast fever subunit vaccine. In addition, orthologs of these antigens may be vaccine targets for other apicomplexan parasites.


Subject(s)
Antigens, Protozoan/immunology , Protozoan Vaccines/immunology , T-Lymphocytes, Cytotoxic/immunology , Theileria parva/immunology , Theileriasis/immunology , Animals , Cattle , Cell Line , Theileriasis/parasitology , Theileriasis/pathology , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...