Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 16(1): 62-73, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38058286

ABSTRACT

A DNOC electrochemical sensor has been developed by using a composite of Zr-UiO-66 and FMWCNTs on a glassy carbon electrode (GCE) and using the differential pulse voltammetry technique. The synthesized materials were physico-chemically characterized by BET, PXRD, FTIR, TGA, EDX, and FESEM. Cyclic voltammetry showed that DNOC has three oxidation peaks at 0.03 V (RSD: 0.23%), 0.42 V (RSD: 0.21%), and 1.32 V (RSD: 0.32%) and three reduction peaks at - 0.20 V (RSD: 0.15%), - 0.82 V (RSD: 0.26%), and - 1.14 V (RSD: 0.19%) which follow a diffusion-controlled mechanism. Different parameters were optimized using differential pulse voltammetry and good linear ranges were found for the simultaneous detection of the three reduction peaks. For a specific concentration range of 0.1-50 µM, a limit of detection of 0.119 µM based on 3Sb/m was obtained. The interfering effects of five non-phenolic pesticides and five heavy metals were evaluated to highlight the selectivity of the developed sensor. It is the first report of an electrochemical DNOC sensor in which all three oxidation peaks are prominently visible. Ethion and chloropyriphos were found to inhibit the redox process of DNOC on the developed sensor platform Zr-UiO-66/FMWCNT/GCE. The sensor was successfully applied to DNOC determination in spiked potato samples and the results showed a standard deviation of less than 3%. The proposed method is expected to provide a novel platform for the quantitative determination of DNOC pesticides in vegetables.

2.
Anal Methods ; 15(20): 2456-2466, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37165935

ABSTRACT

In this work, palm oil fiber (POF) grafted functionalized multiwall carbon nanotube (FMWCNT) decorated ferrocene (Fc) has been drop coated on a platinum electrode (Pt), in which uricase (UOx) has been chemically immobilized for sensitive and selective biosensing of uric acid (UA). Through the use of EDC/NHS, a stable bioelectrode (UOx/Fc/FMWCNT-POF/Pt) was obtained and characterized by FTIR/ATRIR, XRD, Raman, EA/EDX, TGA, SEM, TEM, CV, EIS, CA, and DPV. Results from DPV showed the rapid response of the developed bioelectrode towards UA (0.185 V) with high sensitivity (41.14 µA mM-1) and good limit of detection (19 µM) in the linear range 10-1000 µM. The low value of Michaelis-Menten constant (km = 31.364 µM) shows high affinity of the UA towards the enzyme at the electrode surface. The developed biosensor demonstrates good reproducibility, repeatability, and stability with a deviation of less than 2.5%, and was successfully applied for human blood sample analysis. The CA study revealed a fast response time (2 s) of the sensor. The work has pioneered a new addition to the class of tailorable chemical species for biosensor development and proven to be a promising new tool for point of care testing (POCT) applications.


Subject(s)
Biosensing Techniques , Nanotubes, Carbon , Humans , Uric Acid/analysis , Uric Acid/chemistry , Urate Oxidase/chemistry , Nanotubes, Carbon/chemistry , Palm Oil , Metallocenes , Reproducibility of Results , Biosensing Techniques/methods
3.
ACS Omega ; 7(23): 19420-19427, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721937

ABSTRACT

The aminated metal-organic framework H2N-MIL-101(Cr) was used as the carbon paste electrode (CPE) modifier for the determination of tartrazine (Tz) in soft drinks. The amino material was characterized by electrochemical impedance spectroscopy and showed significantly faster electron transfer with lower charge-transfer resistance (0.13 kΩ) compared to the electrode modified with the unfunctionalized MIL-101(Cr) material (1.1 kΩ). The H2N-MIL-101(Cr)-modified CPE [H2N-MIL-101(Cr)-CPE] was then characterized by cyclic voltammetry (CV) using [Fe(CN)6]3- and [Ru(NH3)6]3+ ions as the redox probes, showing good accumulation of [Fe(CN)6]3- ions on the electrode surface. A CV scan of Tz in Britton Robinson buffer solution revealed an irreversible system with an oxidation peak at +0.998 V versus Ag/AgCl/KCl. Using CV and differential pulse voltammetry, an electrochemical method for quantifying Tz in aqueous medium was then developed. Several parameters that affect the accumulation and detection steps were optimized. Optimal detection of Tz was achieved after 180 s of accumulation in Britton Robinson buffer solution (pH 2) using 2 mg of H2N-MIL-101(Cr) material. Under optimal conditions, the sensor exhibited a linear response in the concentration range of 0.004-0.1 µM and good detection sensitivity (35.4 µA µM-1), and the detection limit for Tz was found to be 1.77 nM (S/N = 3). Satisfactory repeatability, stability, and anti-interference performance were also achieved on H2N-MIL-101(Cr)-CPE. The sensor was applied to commercial juices, and the results obtained were approximately similar to those given by UV-vis spectrophotometry.

4.
Int J Anal Chem ; 2022: 9994639, 2022.
Article in English | MEDLINE | ID: mdl-35310878

ABSTRACT

Nickel(II) tetrasulfonated phthalocyanine (p-NiTSPc)-modified carbon fiber microelectrode (CFME) was used for the first time to investigate the electrochemical quantification of diuron in an agrochemical formulation. The surface morphology and elementary analysis of unmodified carbon fiber microelectrode (CFME) and p-NiTSPc-CFME were performed using atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy (EDX), respectively. Cyclic voltammetry (CV) was used to investigate the electrochemical behaviour of diuron, while square wave voltammetry (SWV) was used for quantitative analysis of diuron. Upon variation of some key analytical parameters, a calibration curve was plotted in the concentration range from 21.450 to 150.150 µM, leading to a detection limit (DL) of 8.030 µM mg/L (3.3σ/m) and a limit of quantification (LQ) of 20.647 µM mg/L. The fabricated p-NiTSPc-CFME was successfully applied for quality control in a commercialized formulation of diuron. The standard additional method was used, and the recovery rate of diuron was found to be 98.4%.

5.
Environ Sci Process Impacts ; 23(10): 1600-1611, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34596189

ABSTRACT

In vitro and in vivo experimental models, mainly based on cell cultures, animals, healthy humans and clinical trials, are useful approaches for identifying the main metabolic pathways. However, time, cost, and matrix complexity often hinder the success of these methods. In this study, we propose an alternative non-enzymatic method, using electrochemistry (EC) coupled to liquid chromatography (LC) - high resolution mass spectrometry (HRMS) - DFT theoretical calculations (EC/LC-MS/DFT) for the mimicry/simulation of the environmental degradation of phenylurea herbicides, and for the mechanism elucidation of this class of herbicides. Fenuron, monuron, isoproturon, linuron, monolinuron, metoxuron and chlortoluron were selected as relevant model compounds. The intended compounds are oxidized by EC, separated by LC and detected using electrospray ionization HRMS. The main oxidation products were hydroxylated compounds obtained by substitution and addition reactions. Unstable quinone imines/methines, rarely observed by conventional methods, have been identified during the oxidative degradation of phenylurea herbicides for the first time in this study. Some were directly observed and the others were trapped by glutathione GSH. Reactions such as hydrolytic substitutions (-Cl/+OH and -C3H7/+OH and -CH3/+OH and -OCH3/+OH), aromatic hydroxylation, alkyl carbon hydroxylation, dehydrochlorination/dehydromethylation/dehydromethoxylation and conjugation have been successfully mimicked. The obtained results, supported by theoretical calculations, are useful for simulating/understanding and predicting the oxidative degradation pathways of pesticides in the environment.


Subject(s)
Herbicides , Animals , Chromatography, Liquid , Density Functional Theory , Electrochemistry , Herbicides/analysis , Humans , Phenylurea Compounds/analysis , Spectrometry, Mass, Electrospray Ionization
6.
Int J Biomater ; 2019: 6862825, 2019.
Article in English | MEDLINE | ID: mdl-31915438

ABSTRACT

In the present work, the usefulness of cetyltrimethylammonium bromide-modified palm oil fiber (CTAB-modified POF) for the removal of indigo carmine (IC) and 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was investigated. Raw, NaOH-treated, and CTAB-modified POF were characterized by Fourier-transform infrared (FT-IR) spectroscopy, elemental analysis, thermogravimetric-hyperdifferential scanning calorimetric (TG-HDSC) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption studies of IC and 2,6-DCPIP were performed in batch mode using CTAB-modified POF. The results showed that equilibrium was attained after a contact time of 30 minutes for IC and 20 minutes for 2,6-DCPIP. The maximum capacity of adsorption was obtained at pH = 2. The capacity of adsorption considerably increased with modified biosorbents and with increasing initial concentration of dyes. The ionic strength favors the increasing adsorption capacity of IC and does not affect the adsorption capacity of 2,6-DCPIP. The percentage of adsorption increased with increasing mass of the biosorbents. The nonlinear regression of adsorption isotherms showed that Freundlich (r 2 = 0.953; χ 2 = 4.398) and Temkin (r 2 = 0.986; χ 2 = 1.196) isotherms are most appropriate to describe the adsorption of IC and 2,6-DCPIP on CTAB-modified POF, respectively. The maximum adsorption capacities determined by the Langmuir isotherm were 275.426 and 230.423 µmol·g-1 for IC and 2,6-DCPIP, respectively. The linear regression of adsorption kinetics was best described by the pseudo-second-order model (R 2 ≥ 0.998). The diffusion mechanism showed that external mass transfer is the main rate controlling step. Desorption of the two dyes is favorable in the alkaline medium.

7.
Bioelectrochemistry ; 119: 20-25, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28889056

ABSTRACT

The electrochemical oxidation of Mammeisin (MA) was studied in a solution containing acetone and 0.1M phosphate buffer +0.1M KCl (pH=5.3) at a glassy carbon electrode (GCE), using cyclic (CV) and square wave voltammetry (SWV). MA showed a quasi-reversible process, which is pH dependent and that involves the exchange of two electrons and two protons. The oxidation product was adsorbed by the electrode surface to form a film that blocks active sites over repetitive cyclic. Moreover, the interaction of MA and bovine serum albumin (BSA) was studied by CV and SWV at different pHs (5.4, 7.2, 9.5). As a result of the affinity binding with BSA, electrochemically inactive complex was formed. In addition, the oxidation potential of MA in the presence of BSA depends on the pH. The diffusion coefficients of both free and bound MA were estimated from the cyclic voltammetry data using the method developed by Randles-Sevich (Df=9.85×10-5cm2s-1 and Db=1.27×10-9cm2s-1) and the binding constant of MA-BSA complex, K=3.47×102Lmol-1, was obtained.


Subject(s)
Carbon/chemistry , Coumarins/chemistry , Coumarins/metabolism , Glass/chemistry , Serum Albumin, Bovine/metabolism , Animals , Cattle , Electrochemistry , Electrodes , Oxidation-Reduction , Protein Binding
8.
Anal Bioanal Chem ; 408(21): 5895-5903, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27349916

ABSTRACT

The nonpathogenic filamentous fungus Scedosporium dehoogii was used for the first time to study the electrochemical biodegradation of acetaminophen (APAP). A carbon fiber microelectrode (CFME) modified by nickel tetrasulfonated phthalocyanine (p-NiTSPc) and a carbon paste electrode (CPE) modified with coffee husks (CH) were prepared to follow the kinetics of APAP biodegradation. The electrochemical response of APAP at both electrodes was studied by cyclic voltammetry and square wave voltammetry. p-NiTSPc-CFME was suitable to measure high concentrations of APAP, whereas CH-CPE gave rise to high current densities but was subject to the passivation phenomenon. p-NiTSPc-CFME was then successfully applied as a sensor to describe the kinetics of APAP biodegradation: this was found to be of first order with a kinetics constant of 0.11 day(-1) (at 25 °C) and a half-life of 6.30 days. APAP biodegradation by the fungus did not lead to the formation of p-aminophenol (PAP) and hydroquinone (HQ) that are carcinogenic, mutagenic, and reprotoxic (CMR). Graphical Abstract The kinetics of APAP biodegradation, followed by a poly-nickel tetrasulfonated phtalocyanine modified carbon fiber microelectrode.


Subject(s)
Acetaminophen/metabolism , Analgesics, Non-Narcotic/metabolism , Environmental Pollutants/metabolism , Scedosporium/metabolism , Acetaminophen/analysis , Analgesics, Non-Narcotic/analysis , Biodegradation, Environmental , Carbon/chemistry , Electrochemical Techniques/methods , Environmental Pollutants/analysis , Indoles/chemistry , Isoindoles , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...