Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Biomed Pharmacother ; 177: 116934, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38889639

ABSTRACT

There is an urgent need to provide immediate and effective options for the treatment of prostate cancer (PCa) to prevent progression to lethal castration-resistant PCa (CRPC). The mevalonate (MVA) pathway is dysregulated in PCa, and statin drugs commonly prescribed for hypercholesterolemia, effectively target this pathway. Statins exhibit anti-PCa activity, however the resulting intracellular depletion of cholesterol triggers a feedback loop that restores MVA pathway activity, thus diminishing statin efficacy and contributing to resistance. To identify drugs that block this feedback response and enhance the pro-apoptotic activity of statins, we performed a high-content image-based screen of a 1508 drug library, enriched for FDA-approved compounds. Two of the validated hits, Galeterone (GAL) and Quinestrol, share the cholesterol-related tetracyclic structure, which is also evident in the FDA-approved CRPC drug Abiraterone (ABI). Molecular modeling revealed that GAL, Quinestrol and ABI not only share structural similarity with 25-hydroxy-cholesterol (25HC) but were also predicted to bind similarly to a known protein-binding site of 25HC. This suggested GAL, Quinestrol and ABI are sterol-mimetics and thereby inhibit the statin-induced feedback response. Cell-based assays demonstrated that these agents inhibit nuclear translocation of sterol-regulatory element binding protein 2 (SREBP2) and the transcription of MVA genes. Sensitivity was independent of androgen status and the Fluva-GAL combination significantly impeded CRPC tumor xenograft growth. By identifying cholesterol-mimetic drugs that inhibit SREBP2 activation upon statin treatment, we provide a potent "one-two punch" against CRPC progression and pave the way for innovative therapeutic strategies to combat additional diseases whose etiology is associated with SREBP2 dysregulation.

2.
Front Oncol ; 13: 1240996, 2023.
Article in English | MEDLINE | ID: mdl-37766871

ABSTRACT

Triple-negative breast cancer (TNBC) and its recently identified subtype, quadruple negative breast cancer (QNBC), collectively account for approximately 13% of reported breast cancer cases in the United States. These aggressive forms of breast cancer are associated with poor prognoses, limited treatment options, and lower overall survival rates. In previous studies, our research demonstrated that VNLG-152R exhibits inhibitory effects on TNBC cells both in vitro and in vivo and the deuterated analogs were more potent inhibitors of TNBC cells in vitro. Building upon these findings, our current study delves into the molecular mechanisms underlying this inhibitory action. Through transcriptome and proteome analyses, we discovered that VNLG-152R upregulates the expression of E3 ligase Synoviolin 1 (SYVN1), also called 3-hydroxy-3-methylglutaryl reductase degradation (HRD1) in TNBC cells. Moreover, we provide genetic and pharmacological evidence to demonstrate that SYVN1 mediates the ubiquitination and subsequent proteasomal degradation of MNK1/2, the only known kinases responsible for phosphorylating eIF4E. Phosphorylation of eIF4E being a rate-limiting step in the formation of the eIF4F translation initiation complex, the degradation of MNK1/2 by VNLG-152R and its analogs impedes dysregulated translation in TNBC cells, resulting in the inhibition of tumor growth. Importantly, our findings were validated in vivo using TNBC xenograft models derived from MDA-MB-231, MDA-MB-468, and MDA-MB-453 cell lines, representing different racial origins and genetic backgrounds. These xenograft models, which encompass TNBCs with varying androgen receptor (AR) expression levels, were effectively inhibited by oral administration of VNLG-152R and its deuterated analogs in NRG mice. Importantly, in direct comparison, our compounds are more effective than enzalutamide and docetaxel in achieving tumor growth inhibition/repression in the AR+ MDA-MD-453 xenograft model in mice. Collectively, our study sheds light on the involvement of SYVN1 E3 ligase in the VNLG-152R-induced degradation of MNK1/2 and the therapeutic potential of VNLG-152R and its more potent deuterated analogs as promising agents for the treatment of TNBC across diverse patient populations.

3.
Bioorg Chem ; 139: 106700, 2023 10.
Article in English | MEDLINE | ID: mdl-37392559

ABSTRACT

Galeterone, 3ß-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Gal, 1) and VNPP433-3ß, 3ß-(1H-imidazole-1-yl-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (2) are potent molecular glue degrader modulators of AR/AR-V7 and Mnk1/2-eIF4E signaling pathways, and are promising Phase 3 and Phase 1 drug candidates, respectively. Because appropriate salts can be utilized to create new chemical entities with enhanced aqueous solubility, in vivo pharmacokinetics, and enhanced in vitro and in vivo efficacies, the monohydrochloride salt of Gal (3) and the mono- and di-hydrochlorides salts of compound 2, compounds 4 and 5, respectively, were synthesized. The salts were characterized using 1H NMR, 13C NMR and HRMS analyses. Compound 3 displayed enhanced in vitro antiproliferative activity (7.4-fold) against three prostate cancer cell lines but surprisingly decreased plasma exposure in the pharmacokinetics study. The antiproliferative activities of the compound 2 salts (4 and 5) were equivalent to that of compound 2, but their oral pharmacokinetic profiles were significantly enhanced. Finally, and most importantly, oral administration of the parent compounds (1 and 2) and their corresponding salts (3, 4 and 5) caused dose-dependent potent inhibition/regression of aggressive and difficult-to-treat CWR22Rv1 tumor xenografts growth, with no apparent host toxicities and were highly more efficacious than the blockbuster FDA-approved prostate cancer drugs, Enzalutamide (Xtandi) and Docetaxel (Taxotere). Thus, the HCl salts of Gal (3) and VNPP433-3ß (4 and 5) are excellent orally bioavailable candidates for clinical development.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Animals , Mice , Docetaxel/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Heterografts , Salts , Receptors, Androgen/metabolism , Nitriles , Benzimidazoles/therapeutic use , Cell Line, Tumor
4.
Cancers (Basel) ; 15(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36831540

ABSTRACT

Targeted protein degradation is a fast-evolving therapeutic strategy to target even the traditionally undruggable target proteins. Contrary to the traditional small-molecule inhibitors of enzyme or receptor antagonists that bind the active site pockets in the target protein, molecular glue degraders facilitate interaction of target proteins with E3 ubiquitin ligases by stabilizing the ternary complex and induce physical proximity, thereby triggering ubiquitination and subsequent proteasomal degradation. AR plays a key role in all stages of prostate cancer. It is activated by the binding of androgenic hormones and transcriptionally regulates multiple genes including the ones that regulate cell cycle. Using HiBiT CRISPR cell line, biochemical methods, and RNA sequencing, we report the potential role of VNPP433-3ß, the next generation galeterone analog as molecular glue that brings together AR, the key driver of prostate cancer and MDM2, an E3 ubiquitin ligase leading to ubiquitination and subsequent degradation of f-AR and AR-V7 in prostate cancer cells.

5.
Steroids ; 192: 109184, 2023 04.
Article in English | MEDLINE | ID: mdl-36702363

ABSTRACT

VNPP433-3ß (compound 2, (3ß-(1H-imidazole-1-yl)-17-(1H-benzimidazole-1-yl)-androsta-5,16-diene), a multitarget anticancer agent has emerged as our lead next generation galeterone analogs (NGGA). Compound 2 is currently in development as potential new therapeutic for prostate and pancreatic cancers. The preliminary toxicity study reveals that the compound 2 was better tolerated by the normal male CD-1 mice than the male Nude mice. The maximum tolerated dose (MTD) in the Nude mice was estimated to be between 25 < 50 mg/kg. After oral dosing of compound 2 to male and female rats, the plasma concentration versus time curves were very consistent between animals and the AUClast increased with dose. Many plasmas concentration versus time curves profiles were nearly flat over 24 hr., suggesting extended absorption from the GI tract. Consequently, reliable values for half-life and AUCinf were not determined. Calculated oral bioavailability (using oral AUClast and excluding the outlier IV animal) ranged from 32 to 47 %. This should be considered a minimum value since the contribution to true AUC beyond 24 hr. is clearly not zero. Clearly, these toxicology and pharmacokinetics parameters pave the way for understanding the anticancer pharmacological actions and provide a meaningful basis for further preclinical development and eventual clinical development.


Subject(s)
Antineoplastic Agents , Mice , Rats , Male , Female , Animals , Mice, Nude , Antineoplastic Agents/toxicity , Benzimidazoles/pharmacology , Androstadienes/pharmacology
6.
Cells ; 11(17)2022 08 30.
Article in English | MEDLINE | ID: mdl-36078112

ABSTRACT

Prostate cancer (PCa) relies in part on AR-signaling for disease development and progression. Earlier, we developed drug candidate galeterone, which advanced through phase 2-clinical trials in treating castration-resistant PCa (CRPC). Subsequently, we designed, synthesized, and evaluated next-generation galeterone-analogs including VNPP433-3ß which is potently efficacious against pre-clinical models of PCa. This study describes the mechanism of action of VNPP433-3ß that promotes degradation of full-length AR (fAR) and its splice variant AR-V7 besides depleting MNK1/2 in in vitro and in vivo CRPC models that stably overexpresses fAR. VNPP433-3ß directly engages AR within the cell and promotes proteasomal degradation of fAR and its splice variant AR-V7 by enhancing the interaction of AR with E3 ligases MDM2/CHIP but disrupting AR-HSP90 binding. Next, VNPP433-3ß decreases phosphorylation of 4EBP1 and abates binding of eIF4E and eIF4G to 5' cap of mRNA by depleting MNK1/2 with consequent depletion of phosphorylated eIF4E. Finally, RNA-seq demonstrates modulation of multiple pathways that synergistically contribute to PCa inhibition. Therefore, VNPP433-3ß exerts its antitumor effect by imposing 1) transcriptional regulation of AR and AR-responsive oncogenes 2) translational regulation by disrupting mRNA-5'cap-dependent translation initiation, 3) reducing AR half-life through enhanced proteasomal degradation in vitro and AR-overexpressing tumor xenografts in vivo.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Eukaryotic Initiation Factor-4E/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/drug effects , Receptors, Androgen/drug effects , Receptors, Androgen/metabolism , RNA, Messenger/therapeutic use
7.
Steroids ; 185: 109062, 2022 09.
Article in English | MEDLINE | ID: mdl-35690119

ABSTRACT

VNPP433-3ß (compound 2, (3ß-(1H-imidazole-1-yl)-17-(1H-benzimidazole-1-yl)-androsta-5,16-diene), a multitarget anticancer agent has emerged as our lead next generation galeterone analogs (NGGA). Here, we describe a large multi-gram (92 g) scale synthesis of compound 2 starting from the commercially available dehydroepiandrosterone-3-acetate (DHEA, 6) via Galeterone (Gal, 1), in 8 steps with a 26% overall yield and 99.5% purity. The overall yield for the synthesis of Gal from DHEA improved from previously reported 47% to 59%. The advantages of this synthesis are as follows: (1) In the first two steps of Scheme 2, the change of solvents and reagents enabled the isolation of compounds 7 and 8 from heptane triturations, as column chromatography was eliminated in both steps. (2) In step 3 (deformylation) the catalyst required was reduced from 50% to 10% (wt/wt) of compound 8 which enable easy purification of compound 9, with modest increased yield. (3) The fourth step to produce Gal (1) was improved by using methanol, eliminating the use of tetrahydrofuran (THF) and dichloromethane, solvent which may be a problem as residual solvent contaminant. (4) In the final step 8, the imidazole-ring formation, inexpensive glyoxal (40% aqueous solution) was used in the reaction instead of expensive glyoxal trimer dihydrate. The structure of the target product (2, VNPP433-3ß) was established by NMR spectroscopy, mass spectrometry and elemental analysis. Gal and VNPP433-3ß exhibit more potent antiproliferative activities against CWR22Rv1 human prostate cancer cells compared to clinical drugs, Abiraterone and Enzalutamide.


Subject(s)
Benzimidazoles , Dehydroepiandrosterone , Androstadienes , Benzimidazoles/chemistry , Glyoxal , Humans , Male , Solvents
8.
Mol Carcinog ; 61(7): 643-654, 2022 07.
Article in English | MEDLINE | ID: mdl-35512605

ABSTRACT

Cancer stem cells (CSCs) virtually present in all tumors albeit in small numbers are primarily responsible for driving cancer progression, metastasis, drug resistance, and recurrence. Prostate cancer (PCa) is the second most frequent cancer in men worldwide, and castration resistant prostate cancer (CRPC) remains a major challenge despite the tremendous advancements in medicine. Currently, none of the available treatment options are effective in treating CRPC. We earlier reported that VNPP433-3ß, the lead next-generation galeterone analog is effective in treating preclinical in vivo models of CRPC. In this study using RNA-seq, cytological, and biochemical methods, we report that VNPP433-3ß inhibits prostate CSCs by targeting key pathways critical to stemness and epithelial-mesenchymal transition. VNPP433-3ß inhibits CSCs in PCa, presumably by degrading the androgen receptor (AR) thereby decreasing the AR-mediated transcription of several stem cell markers including BMI1 and KLF4. Transcriptome analyses by RNA-seq, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis demonstrate that VNPP433-3ß inhibits transcription of several genes and functional pathways critical to the prostate CSCs thereby inhibiting CSCs in PCa besides targeting the bulk of the tumor.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Androstadienes , Benzimidazoles , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Gene Expression Profiling , Humans , Male , Neoplastic Stem Cells/pathology , Prostate/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
9.
Eur J Med Chem ; 238: 114441, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35617854

ABSTRACT

A new and improved synthesis of lead Mnk1/2 protein degrader, VNLG-152R, 4-(±)-(1H-imidazole-1-yl)-N-(4-fluorophenyl)-(E)-retinamide (1) has been developed from commercially available 4-oxo-ATRA (8). This procedure was also utilized to synthesize the seven possible deuterated analogs of compound 1 (11-17). The deuterated analogs were either better or equipotent to 1 in in vitro antiproliferative activities against MDA-MB-231 and MDA-MB-468 human TNBC cells. The Mnk1/2 degraders were equally effective as a standard TNBC therapy (paclitaxel). Importantly, the expression of Mnk1, peIF4E and their associated downstream targets, including cyclin D1 and Bcl2, were strongly decreased in compound 1/analogs (11-17)-treated TNBC cells signifying inhibition of Mnk1-eIF4E signaling. More importantly, we showed that deuterated analogs, 12, 16 and 17 possess improved pharmacokinetics parameters following oral administration to CD-1 female mice compared to the parent non-deuterated compound 1, thus addressing the rapid clearance (short half-life and short residence time) pharmacokinetic inadequacy of compound 1.


Subject(s)
Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms , Animals , Eukaryotic Initiation Factor-4E/metabolism , Female , Humans , Mice , Paclitaxel , Signal Transduction
10.
Cancers (Basel) ; 12(11)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217941

ABSTRACT

Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.

11.
Cancers (Basel) ; 11(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31653008

ABSTRACT

These studies compared the efficacies of our clinical agent galeterone (Gal) and the FDA-approved prostate cancer drug, enzalutamide (ENZ) with two lead next generation galeterone analogs (NGGAs), VNPP414 and VNPP433-3ß, using prostate cancer (PC) in vitro and in vivo models. Antitumor activities of orally administered agents were also assessed in CWR22Rv1 tumor-bearing mice. We demonstrated that Gal and NGGAs degraded AR/AR-V7 and Mnk1/2; blocked cell cycle progression and proliferation of human PC cells; induced apoptosis; inhibited cell migration, invasion, and putative stem cell markers; and reversed the expression of epithelial-to-mesenchymal transition (EMT). In addition, Gal/NGGAs (alone or in combination) also inhibited the growth of ENZ-, docetaxel-, and mitoxantrone-resistant human PC cell lines. The NGGAs exhibited improved pharmacokinetic profiles over Gal in mice. Importantly, in vivo testing showed that VNPP433-3ß (at 7.53-fold lower equimolar dose than Gal) markedly suppressed (84% vs. Gal, 47%; p < 0.01) the growth of castration-resistant PC (CRPC) CWR22Rv1 xenograft tumors, with no apparent host toxicity. ENZ was ineffective in this CRPC xenograft model. In summary, our findings show that targeting AR/AR-V7 and Mnk1/2 for degradation represents an effective therapeutic strategy for PC/CRPC treatment and supports further development of VNPP433-3ß towards clinical investigation.

12.
Cancers (Basel) ; 11(3)2019 Mar 03.
Article in English | MEDLINE | ID: mdl-30832411

ABSTRACT

Currently, there are no effective therapies for patients with triple-negative breast cancer (TNBC), an aggressive and highly metastatic disease. Activation of eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases 1 and 2 (Mnk1/2) play a critical role in the development, progression and metastasis of TNBC. Herein, we undertook a comprehensive study to evaluate the activity of a first-in-class Mnk1/2 protein degraders, racemic VNLG-152R and its two enantiomers (VNLG-152E1 and VNLG-152E2) in in vitro and in vivo models of TNBC. These studies enabled us to identify racemic VNLG-152R as the most efficacious Mnk1/2 degrader, superior to its pure enantiomers. By targeting Mnk1/2 protein degradation (activity), VNLG-152R potently inhibited both Mnk-eIF4E and mTORC1 signaling pathways and strongly regulated downstream factors involved in cell cycle regulation, apoptosis, pro-inflammatory cytokines/chemokines secretion, epithelial-mesenchymal transition (EMT) and metastasis. Most importantly, orally bioavailable VNLG-152R exhibited remarkable antitumor (91 to 100% growth inhibition) and antimetastatic (~80% inhibition) activities against cell line and patient-derived TNBC xenograft models, with no apparent host toxicity. Collectively, these studies demonstrate that targeting Mnk-eIF4E/mTORC1 signaling with a potent Mnk1/2 degrader, VNLG-152R, is a novel therapeutic strategy that can be developed as monotherapy for the effective treatment of patients with primary/metastatic TNBC.

13.
FEBS J ; 285(6): 1051-1063, 2018 03.
Article in English | MEDLINE | ID: mdl-29323792

ABSTRACT

VNLG-152 is a novel retinamide (NR) shown to suppress growth and progression of genetically diverse prostate cancer cells via inhibition of androgen receptor signaling and eukaryotic initiation factor 4E (eIF4E) translational machinery. Herein, we report therapeutic effects of VNLG-152 on castration-resistant prostate cancer (CRPC) growth and metastatic phenotype in a CRPC tumor xenograft model. Administration of VNLG-152 significantly and dose-dependently suppressed the growth of aggressive CWR22Rv1 tumors by 63.4% and 76.3% at 10 and 20 mg·kg-1 bw, respectively (P < 0.0001), vs. vehicle with no host toxicity. Strikingly, the expression of full-length androgen receptor (f-AR)/androgen receptor splice variant-7 (AR-V7), mitogen-activated protein kinase-interacting kinases 1 and 2 (MNK1/2), phosphorylated eIF4E and their associated target proteins, including prostate-specific antigen, cyclin D1 and Bcl-2, were strongly decreased in VNLG-152-treated tumors signifying inhibition of f-AR/AR-V7 and MNK-eIF4E signaling in VNLG-152-treated CWR22Rv1 tumors as observed in vitro. VNLG-152 also suppressed the epithelial to mesenchymal transition in CWR22Rv1 tumors as evidenced by repression of N-cadherin, ß-catenin, claudin, Slug, Snail, Twist, vimentin and matrix metalloproteinases (MMP-2 and MMP-9) with upsurge in E-cadherin. These results highlight the promising use of VNLG-152 in CRPC therapy and justify its further development towards clinical trials.


Subject(s)
Epithelial-Mesenchymal Transition/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Prostatic Neoplasms, Castration-Resistant/prevention & control , Protein Serine-Threonine Kinases/metabolism , Receptors, Androgen/metabolism , Tretinoin/analogs & derivatives , Xenograft Model Antitumor Assays , Alternative Splicing , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Interference , Receptors, Androgen/genetics , Signal Transduction/drug effects , Signal Transduction/genetics , Tretinoin/pharmacology
14.
Oncotarget ; 8(51): 88501-88516, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29179452

ABSTRACT

The androgen receptor (AR) has long been the primary target for the treatment of prostate cancer (PC). Despite continuous efforts to block AR activity through ligand depletion, AR antagonism, AR depletion and combinations thereof, advanced PC tumors remain resilient. Herein, we evaluate two galeterone analogs, VNPT-178 and VNLG-74A, in PC cell models of diverse androgen and AR dependence attempting to delineate their mechanisms of action and potential clinical utility. Employing basic biochemical techniques, we determined that both analogs have improved antiproliferative and anti-AR activities compared to FDA-approved abiraterone and enzalutamide. However, induction of apoptosis in these models is independent of the AR and its truncated variant, AR-V7, and instead likely results from sustained endoplasmic reticulum stress and deregulated calcium homeostasis. Using in silico molecular docking, we predict VNPT-178 and VNLG-74A bind the ATPase domain of BiP/Grp78 and Hsp70-1A with greater affinity than the AR. Disruption of 70 kDa heat shock protein function may be the underlying mechanism of action for these galeterone analogs. Therefore, despite simultaneously antagonizing AR activity, AR and/or AR-V7 expression alone may inadequately predict a patient's response to treatment with VNPT-178 or VNLG-74A. Future studies evaluating the context-specific limitations of these compounds may provide clarity for their clinical application.

15.
Oncotarget ; 8(32): 52381-52402, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-28881737

ABSTRACT

Survival rate for pancreatic cancer (pancreatic ductal adenocarcinoma, PDAC) is poor, with about 80% of patients presenting with the metastatic disease. Gemcitabine, the standard chemotherapeutic agent for locally advanced and metastatic PDAC has limited efficacy, attributed to innate/acquired resistance and activation of pro-survival pathways. The Mnk1/2-eIF4E and NF-κB signaling pathways are implicated in PDAC disease progression/metastasis and also associated with gemcitabine-induced resistance in PDAC. Galeterone (gal), a multi-target, agent in phase III clinical development for prostate cancer has also shown effects on the aforementioned pathways. We show for the first time, that gal/analogs (VNPT55, VNPP414 and VNPP433-3ß) profoundly inhibited cell viability of gemcitabine-naive/resistance PDAC cell lines and strongly synergized with gemcitabine in gemcitabine-resistant PDAC cells. In addition, to inducing G1 cell cycle arrest, gal/analogs induced caspase 3-mediated cell-death of PDAC cells. Gal/analogs caused profound downregulation of Mnk1/2, peIF4E and NF-κB (p-p65), metastatic inducing factors (N-cadherin, MMP-1/-2/-9, Slug, Snail and CXCR4) and putative stem cell factors, (ß-Catenin, Nanog, BMI-1 and Oct-4). Gal/analog also depleted EZH2 and upregulated E-Cadherin. These effects resulted in significant inhibition of PDAC cell migration, invasion and proliferation. Importantly, we also observed strong MiaPaca-2 tumor xenograft growth inhibition (61% to 92%). Collectively, these promising findings strongly support further development of gal/analogs as novel therapeutics for PDAC.

16.
Curr Opin Oncol ; 29(3): 210-220, 2017 May.
Article in English | MEDLINE | ID: mdl-28282343

ABSTRACT

PURPOSE OF REVIEW: The current overview will summarize some of the developments in the area of protein translation, including their relation to the therapeutic targeting of prostate cancer. RECENT FINDINGS: Translational control, mediated by the rate-limiting eukaryotic translation initiation factor 4E (eIF4E), drives selective translation of several oncogenic proteins, thereby contributing to tumor growth, metastasis, and treatment resistance in various cancers, including prostate cancer. As an essential regulatory hub, several oncogenic hyperactive signaling pathways appear to converge on eIF4E to promote tumorigenesis. Several approaches that target the eIF4E-dependent protein translation network are being actively studied, and it is likely that some may ultimately emerge as promising anticancer therapeutics. SUMMARY: An array of inhibitors has shown promise in targeting specific components of the translational machinery in several preclinical models of prostate cancer. It is hoped that some of these approaches may ultimately have relevance in improving the clinical outcomes of patients with advanced prostate cancer.

18.
Expert Opin Ther Targets ; 21(1): 9-10, 2017 01.
Article in English | MEDLINE | ID: mdl-27428760
19.
J Steroid Biochem Mol Biol ; 166: 16-27, 2017 02.
Article in English | MEDLINE | ID: mdl-27481707

ABSTRACT

Prostate cancer (PCa) is the most frequently diagnosed non-cutaneous malignancy and leading cause of cancer mortality in men. At the initial stages, prostate cancer is dependent upon androgens for their growth and hence effectively combated by androgen deprivation therapy (ADT). However, most patients eventually recur with an androgen deprivation-resistant phenotype, referred to as castration-resistant prostate cancer (CRPC), a more aggressive form for which there is no effective therapy presently available. The current review is an attempt to cover and establish an understanding of some major signaling pathways implicated in prostate cancer development and castration-resistance, besides addressing therapeutic strategies that targets the key signaling mechanisms.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/genetics , Signal Transduction , Androgens/metabolism , Animals , Biomarkers, Tumor/metabolism , Clinical Trials as Topic , Disease Progression , Humans , Intercellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Male , Mice , NF-kappa B/metabolism , Neoplasm Recurrence, Local , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , RANK Ligand/metabolism , Receptors, Androgen/metabolism , Taxoids/therapeutic use , Transcription Factors/metabolism
20.
FEBS J ; 283(21): 3898-3918, 2016 11.
Article in English | MEDLINE | ID: mdl-27618366

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) accounts for a high percentage of prostate cancer mortality. The proprietary compound galeterone (gal) was designed to inhibit proliferation of androgen/androgen receptor (AR)-dependent prostate cancer cell in vitro and in vivo and is currently in phase III clinical development. Additionally, clinical studies with gal revealed its superb efficacy in four different cohorts of patients with mCRPC, including those expressing splice variant AR-V7. Preclinical studies with gal show that it also exhibits strong antiproliferative activities against AR-negative prostate cancer cells and tumors through a mechanism involving phosphorylation of eIF2α, which forms an integral component of the eukaryotic mRNA translation complex. Thus, we hypothesized that gal and its new analog, VNPT55, could modulate oncogenic mRNA translation and prostate cancer cell migration and invasion. We report that gal and VNPT55 profoundly inhibit migration and invasion of prostate cancer cells, possibly by down-regulating protein expression of several EMT markers (Snail, Slug, N-cadherin, vimentin, and MMP-2/-9) via antagonizing the Mnk-eIF4E axis. In addition, gal/VNPT55 inhibited both NF-κB and Twist1 transcriptional activities, down-regulating Snail and BMI-1 mRNA expression, respectively. Furthermore, profound up-regulation of E-cadherin mRNA and protein expression may explain the observed significant inhibition of prostate cancer cell migration and invasion. Moreover, expression of self-renewal proteins, ß-catenin, CD44, and Nanog, was markedly depleted. Analysis of gal/VNPT55-treated CWR22Rv1 xenograft tissue sections also revealed that observations in vitro were recapitulated in vivo. Our results suggest that gal/VNPT55 could become promising agents for the prevention and/or treatment of all stages of prostate cancer.


Subject(s)
Androstadienes/pharmacology , Benzimidazoles/pharmacology , Cell Movement/drug effects , Eukaryotic Initiation Factor-4E/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Prostatic Neoplasms/drug therapy , Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line , Cell Movement/genetics , Eukaryotic Initiation Factor-4E/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunoblotting , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice, SCID , NF-kappa B/metabolism , Neoplasm Invasiveness , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/genetics , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...