Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Plant Genome ; 16(4): e20401, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37903749

ABSTRACT

Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost-efficient genotyping using next-generation sequencing. However, accurate genotype calling from next-generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome-wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype-calling methods using data from two autotetraploid species, Miscanthus sacchariflorus and Vaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype-calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost-efficiently implement GWAS and genomic prediction in polyploid crops.


Subject(s)
Genome-Wide Association Study , Genomics , Genome-Wide Association Study/methods , Bayes Theorem , Genotype , Genomics/methods , Polyploidy
2.
Ann Appl Biol ; 180(2): 211-223, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35873878

ABSTRACT

Taro (Colocasia esculenta) and tannia (Xanthosoma sp.) plants growing in 25 districts across Ethiopia, Kenya, Tanzania and Uganda were surveyed for four RNA viruses. Leaf samples from 392 plants were tested for cucumber mosaic virus (CMV), dasheen mosaic virus (DsMV), taro vein chlorosis virus (TaVCV) and Colocasia bobone disease-associated virus (CBDaV) by RT-PCR. No samples tested positive for TaVCV or CBDaV, while CMV was only detected in three tannia samples with mosaic symptoms from Uganda. DsMV was detected in 40 samples, including 36 out of 171 from Ethiopia, one out of 94 from Uganda and three out of 41 from Tanzania, while none of the 86 samples from Kenya tested positive for any of the four viruses. The complete genomes of nine DsMV isolates from East Africa were cloned and sequenced. Phylogenetic analyses based on the amino acid sequence of the DsMV CP-coding region revealed two distinct clades. Isolates from Ethiopia were distributed in both clades, while samples from Uganda and Tanzania belong to different clades. Seven possible recombination events were identified from the analysis carried out on the available 15 full-length DsMV isolates. Nucleotide substitution ratio analysis revealed that all the DsMV genes are under strong negative selection pressure.

3.
Plant Dis ; 106(1): 39-45, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34279983

ABSTRACT

The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Cucurbita , Potyvirus , Kenya , Phylogeny , Plant Diseases , Potyvirus/genetics
4.
Virus Res ; 286: 198081, 2020 09.
Article in English | MEDLINE | ID: mdl-32663481

ABSTRACT

Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.


Subject(s)
Genetic Variation , Genome, Viral , Plant Diseases/virology , Potyvirus/genetics , Tombusviridae/genetics , Zea mays/virology , High-Throughput Nucleotide Sequencing , Kenya , Potyvirus/classification , Potyvirus/isolation & purification , Recombination, Genetic , Tombusviridae/classification , Tombusviridae/isolation & purification
5.
Physiol Mol Plant Pathol ; 110: 101473, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32454559

ABSTRACT

Sweet potato feathery mottle virus is a potyvirus that infect sweet potato. The genome of the virus was analysed to understand genetic diversity, evolution and gene flow. Motifs, nucleotide identity and a phylogenetic tree were used to determine phylogroup of the isolates. Gene flow and genetic diversity were tested using DnaSP v.5. Codons evolution were tested using three methods embedded in Datamonkey. The results indicate occurrence of an isolate of phylogroup B within East Africa. Low genetic differentiation was observed between isolates from Kenya and Uganda indicating evidence of gene flow between the two countries. Four genes were found to have positively selected codons bordering or occurring within functional motifs. A motif within P1 gene evolved differently between phylogroup A and B. The evidence of gene flow indicates frequent exchange of the virus between the two countries and P1 gene motif provide a possible marker that can be used for mapping the distribution of the phylogroups.

6.
Front Microbiol ; 11: 205, 2020.
Article in English | MEDLINE | ID: mdl-32194518

ABSTRACT

Carica papaya L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD). The disease is believed to be caused by papaya ringspot virus (PRSV). Previous attempts to detect PRSV in papaya plants showing PRSD symptoms, using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) procedures with primers specific to PRSV, have not yielded conclusive results. Therefore, the nature of viruses responsible for PRSD was elucidated in papaya leaves collected from 22 counties through Illumina MiSeq next-generation sequencing (NGS) and validated by RT-PCR and Sanger sequencing. Viruses were detected in 38 out of the 48 leaf samples sequenced. Sequence analysis revealed the presence of four viruses: a Potyvirus named Moroccan watermelon mosaic virus (MWMV) and three viruses belonging to the genus Carlavirus. The Carlaviruses include cowpea mild mottle virus (CpMMV) and two putative Carlaviruses-closely related but distinct from cucumber vein-clearing virus (CuVCV) with amino acid and nucleotide sequence identities of 75.7-78.1 and 63.6-67.6%, respectively, in the coat protein genes. In reference to typical symptoms observed in the infected plants, the two putative Carlaviruses were named papaya mottle-associated virus (PaMV) and papaya mild mottle-associated virus (PaMMV). Surprisingly, and in contrast to previous studies conducted in other parts of world, PRSV was not detected. The majority of the viruses were detected as single viral infections, while a few were found to be infecting alongside another virus (for example, MWMV and PaMV). Furthermore, the NGS and RT-PCR analysis identified MWMV as being strongly associated with ringspot symptoms in infected papaya fruits. This study has provided the first complete genome sequences of these viruses isolated from papaya in Kenya, together with primers for their detection-thus proving to be an important step towards the design of long-term, sustainable disease management strategies.

7.
Transbound Emerg Dis ; 67 Suppl 1: 99-107, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174038

ABSTRACT

Theileria parva is a tick-transmitted apicomplexan protozoan parasite that infects lymphocytes of cattle and African Cape buffalo (Syncerus caffer), causing a frequently fatal disease of cattle in eastern, central and southern Africa. A live vaccination procedure, known as infection and treatment method (ITM), the most frequently used version of which comprises the Muguga, Serengeti-transformed and Kiambu 5 stocks of T. parva, delivered as a trivalent cocktail, is generally effective. However, it does not always induce 100% protection against heterologous parasite challenge. Knowledge of the genetic diversity of T. parva in target cattle populations is therefore important prior to extensive vaccine deployment. This study investigated the extent of genetic diversity within T. parva field isolates derived from Ankole (Bos taurus) cattle in south-western Uganda using 14 variable number tandem repeat (VNTR) satellite loci and the sequences of two antigen-encoding genes that are targets of CD8+T-cell responses induced by ITM, designated Tp1 and Tp2. The findings revealed a T. parva prevalence of 51% confirming endemicity of the parasite in south-western Uganda. Cattle-derived T. parva VNTR genotypes revealed a high degree of polymorphism. However, all of the T. parva Tp1 and Tp2 alleles identified in this study have been reported previously, indicating that they are widespread geographically in East Africa and highly conserved.


Subject(s)
Antigens, Protozoan/genetics , Buffaloes/parasitology , Cattle Diseases/parasitology , Minisatellite Repeats/genetics , Protozoan Vaccines/immunology , Theileria parva/genetics , Theileriasis/parasitology , Alleles , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/parasitology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Female , Genetic Variation , Genotype , Male , Polymorphism, Genetic/genetics , Theileria parva/immunology , Theileriasis/epidemiology , Theileriasis/prevention & control , Ticks/parasitology , Uganda/epidemiology , Vaccines, Attenuated/immunology
8.
Pathogens ; 9(1)2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31861452

ABSTRACT

Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n=223). Analysis of a subset (n=48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers' interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamicsin Tanzania and emphasizes the need for regional scientists to utilize farmers' awareness in managing the disease.

9.
Gigascience ; 8(10)2019 10 01.
Article in English | MEDLINE | ID: mdl-31574156

ABSTRACT

BACKGROUND: The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.


Subject(s)
Genome, Plant , Solanum/genetics , Acclimatization/genetics , Disease Resistance/genetics , Droughts , Evolution, Molecular , Phylogeny , Polymorphism, Single Nucleotide , Retroelements , Terminal Repeat Sequences
10.
Malar J ; 18(1): 159, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053072

ABSTRACT

BACKGROUND: Falcipains are major cysteine proteases of Plasmodium falciparum involved in haemoglobin degradation and remain attractive anti-malarial drug targets. Several inhibitors against these proteases have been identified, yet none of them has been approved for malaria treatment. Other Plasmodium species also possess highly homologous proteins to falcipains. For selective therapeutic targeting, identification of sequence and structure differences with homologous human cathepsins is necessary. The substrate processing activity of these proteins is tightly controlled via a prodomain segment occluding the active site which is chopped under low pH conditions exposing the catalytic site. Current work characterizes these proteases to identify residues mediating the prodomain regulatory function for the design of peptide based anti-malarial inhibitors. METHODS: Sequence and structure variations between prodomain regions of plasmodial proteins and human cathepsins were determined using in silico approaches. Additionally, evolutionary clustering of these proteins was evaluated using phylogenetic analysis. High quality partial zymogen protein structures were modelled using homology modelling and residue interaction analysis performed between the prodomain segment and mature domain to identify key interacting residues between these two domains. The resulting information was used to determine short peptide sequences which could mimic the inherent regulatory function of the prodomain regions. Through flexible docking, the binding affinity of proposed peptides on the proteins studied was evaluated. RESULTS: Sequence, evolutionary and motif analyses showed important differences between plasmodial and human proteins. Residue interaction analysis identified important residues crucial for maintaining prodomain integrity across the different proteins as well as the pro-segment responsible for inhibitory mechanism. Binding affinity of suggested peptides was highly dependent on their residue composition and length. CONCLUSIONS: Despite the conserved structural and catalytic mechanism between human cathepsins and plasmodial proteases, current work revealed significant differences between the two protein groups which may provide valuable information for selective anti-malarial inhibitor development. Part of this study aimed to design peptide inhibitors based on endogenous inhibitory portions of protease prodomains as a novel aspect. Even though peptide inhibitors may not be practical solutions to malaria at this stage, the approach followed and results offer a promising means to find new malarial inhibitors.


Subject(s)
Catalytic Domain , Cysteine Endopeptidases/chemistry , Peptide Hydrolases/chemistry , Peptides/chemistry , Amino Acid Sequence , Cathepsins/chemistry , Computer Simulation , Enzyme Precursors/chemistry , Humans , Molecular Docking Simulation , Protein Binding , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Structural Homology, Protein
11.
Arch Virol ; 164(6): 1717-1721, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30900069

ABSTRACT

Next-generation sequencing of RNA extracted from a pumpkin plant with mosaic symptoms in Kenya identified the presence of a polerovirus sequence closely related to pepo aphid-borne yellows virus (PABYV). The near-complete polerovirus sequence comprised 5,810 nucleotides and contained seven putative open reading frames (ORFs) with a genome organisation typical of poleroviruses. BLASTp analysis of the translated sequences of ORFs 0, 1 and 2 revealed that their amino acid sequences differed by more than 10% from the corresponding protein sequences of other poleroviruses. These results suggest that this virus is a putative novel member of the genus Polerovirus, which has been provisionally named "pumpkin polerovirus" (PuPV).


Subject(s)
Cucurbita/virology , Luteoviridae/isolation & purification , Sequence Analysis, RNA/methods , Genome Size , Genome, Viral , High-Throughput Nucleotide Sequencing , Kenya , Luteoviridae/genetics , Open Reading Frames , Phylogeny
12.
Front Microbiol ; 9: 2939, 2018.
Article in English | MEDLINE | ID: mdl-30581419

ABSTRACT

Two closely related potyviruses, bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV), are regarded as major constraints on production of common bean (Phaseolus vulgaris L.) in Eastern and Central Africa, where this crop provides a high proportion of dietary protein as well as other nutritional, agronomic, and economic benefits. Previous studies using antibody-based assays and indicator plants indicated that BCMV and BCMNV are both prevalent in bean fields in the region but these approaches cannot distinguish between these potyviruses or detect other viruses that may threaten the crop. In this study, we utilized next generation shotgun sequencing for a metagenomic examination of viruses present in bean plants growing at two locations in Kenya: the University of Nairobi Research Farm in Nairobi's Kabete district and at sites in Kirinyaga County. RNA was extracted from leaves of bean plants exhibiting apparent viral symptoms and sequenced on the Illumina MiSeq platform. We detected BCMNV, cucumber mosaic virus (CMV), and Phaseolus vulgaris alphaendornaviruses 1 and 2 (PvEV1 and 2), with CMV present in the Kirinyaga samples. The CMV strain detected in this study was most closely related to Asian strains, which suggests that it may be a recent introduction to the region. Surprisingly, and in contrast to previous surveys, BCMV was not detected in plants at either location. Some plants were infected with PvEV1 and 2. The detection of PvEV1 and 2 suggests these seed transmitted viruses may be more prevalent in Eastern African bean germplasm than previously thought.

13.
PLoS One ; 13(10): e0204047, 2018.
Article in English | MEDLINE | ID: mdl-30303978

ABSTRACT

Theileria parva is a protozoan parasite transmitted by the brown ear tick Rhipicephalus appendiculatus that causes East Coast fever (ECF) in cattle, resulting in substantial economic losses in the regions of southern, eastern and central Africa. The schizont form of the parasite transforms the bovine host lymphocytes into actively proliferating cancer-like cells. However, how T. parva causes bovine host cells to proliferate and maintain a cancerous phenotype following infection is still poorly understood. On the other hand, current efforts to develop improved vaccines have identified only a few candidate antigens. In the present paper, we report the first comparative transcriptomic analysis throughout the course of T. parva infection. We observed that the development of sporoblast into sporozoite and then the establishment in the host cells as schizont is accompanied by a drastic increase of upregulated genes in the schizont stage of the parasite. In contrast, the ten highest gene expression values occurred in the arthropod vector stages. A comparative analysis showed that 2845 genes were upregulated in both sporozoite and schizont stages compared to the sporoblast. In addition, 647 were upregulated only in the sporozoite whereas 310 were only upregulated in the schizont. We detected low p67 expression in the schizont stage, an unexpected finding considering that p67 has been reported as a sporozoite stage-specific gene. In contrast, we found that transcription of p67 was 20 times higher in the sporoblast than in the sporozoite. Using the expression profiles of recently identified candidate vaccine antigens as a benchmark for selection for novel potential vaccine candidates, we identified three genes with expression similar to p67 and several other genes similar to Tp1-Tp10 schizont vaccine antigens. We propose that the antigenicity or chemotherapeutic potential of this panel of new candidate antigens be further investigated. Structural comparisons of the transcripts generated here with the existing gene models for the respective loci revealed indels. Our findings can be used to improve the structural annotation of the T. parva genome, and the identification of alternatively spliced transcripts.


Subject(s)
Antigens, Protozoan/genetics , Gene Expression Profiling/methods , Theileria parva/growth & development , Theileriasis/parasitology , Animals , Antigens, Protozoan/immunology , Cattle , Gene Expression Regulation, Developmental , High-Throughput Nucleotide Sequencing/methods , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Schizonts/genetics , Schizonts/immunology , Sequence Analysis, RNA/methods , Sporozoites/genetics , Sporozoites/immunology , Theileria parva/genetics , Theileria parva/immunology , Up-Regulation
14.
Virol J ; 15(1): 90, 2018 05 23.
Article in English | MEDLINE | ID: mdl-29792207

ABSTRACT

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Subject(s)
Gammaherpesvirinae/genetics , Genome, Viral , Luteoviridae/genetics , Potyviridae/genetics , Potyvirus/genetics , Zea mays/virology , Amino Acid Sequence , Capsid Proteins/genetics , Chromosome Mapping , Gammaherpesvirinae/classification , Gammaherpesvirinae/isolation & purification , Gammaherpesvirinae/pathogenicity , High-Throughput Nucleotide Sequencing , Kenya , Luteoviridae/classification , Luteoviridae/isolation & purification , Luteoviridae/pathogenicity , Metagenomics/methods , Phylogeny , Plant Diseases/virology , Plant Leaves/virology , Polymorphism, Genetic , Potyviridae/classification , Potyviridae/isolation & purification , Potyviridae/pathogenicity , Potyvirus/classification , Potyvirus/isolation & purification , Potyvirus/pathogenicity , Sequence Alignment , Sequence Homology, Amino Acid , Sorghum/virology
15.
Front Microbiol ; 9: 57, 2018.
Article in English | MEDLINE | ID: mdl-29434580

ABSTRACT

Aspergillus flavus is the main producer of carcinogenic aflatoxins in agricultural commodities such as maize. This fungus occurs naturally on crops, and produces aflatoxins when environmental conditions are favorable. The aim of this study is to analyse the genetic variability among 109 A. flavus isolates previously recovered from maize sampled from a known aflatoxin-hotspot (Eastern region, Kenya) and the major maize-growing area in the Rift Valley (Kenya), and to determine their toxigenic potential. DNA analyses of internal transcribed spacer (ITS) regions of ribosomal DNA, partial ß-tubulin gene (benA) and calmodulin gene (CaM) sequences were used. The strains were further analyzed for the presence of four aflatoxin-biosynthesis genes in relation to their capability to produce aflatoxins and other metabolites, targeting the regulatory gene aflR and the structural genes aflP, aflD, and aflQ. In addition, the metabolic profile of the fungal strains was unraveled using state-of-the-art LC-MS/MS instrumentation. The three gene-sequence data grouped the isolates into two major clades, A. minisclerotigenes and A. flavus. A. minisclerotigenes was most prevalent in Eastern Kenya, while A. flavus was common in both regions. A. parasiticus was represented by a single isolate collected from Rift Valley. Diversity existed within the A. flavus population, which formed several subclades. An inconsistency in identification of some isolates using the three markers was observed. The calmodulin gene sequences showed wider variation of polymorphisms. The aflatoxin production pattern was not consistent with the presence of aflatoxigenic genes, suggesting an inability of the primers to always detect the genes or presence of genetic mutations. Significant variation was observed in toxin profiles of the isolates. This is the first time that a profound metabolic profiling of A. flavus isolates was done in Kenya. Positive associations were evident for some metabolites, while for others no associations were found and for a few metabolite-pairs negative associations were seen. Additionally, the growth medium influenced the mycotoxin metabolite production. These results confirm the wide variation that exists among the group A. flavus and the need for more insight in clustering the group.

16.
Ecol Evol ; 8(3): 1543-1553, 2018 02.
Article in English | MEDLINE | ID: mdl-29435231

ABSTRACT

The Horn of Africa forms one of the two main historical entry points of domestics into the continent and Ethiopia is particularly important in this regard. Through the analysis of mitochondrial DNA (mtDNA) d-loop region in 309 individuals from 13 populations, we reveal the maternal genetic variation and demographic dynamics of Ethiopian indigenous goats. A total of 174 variable sites that generated 231 haplotypes were observed. They defined two haplogroups that were present in all the 13 study populations. Reference haplotypes from the six globally defined goat mtDNA haplogroups show the two haplogroups present in Ethiopia to be A and G, the former being the most predominant. Although both haplogroups are characterized by an increase in effective population sizes (Ne) predating domestication, they also have experienced a decline in Ne at different time periods, suggesting different demographic histories. We observed seven haplotypes, six were directly linked to the central haplotypes of the two haplogroups and one was central to haplogroup G. The seven haplotypes were common between Ethiopia, Kenya, Egypt, and Saudi Arabia populations, suggesting common maternal history and the introduction of goats into East Africa via Egypt and the Arabian Peninsula, respectively. While providing new mtDNA data from a historically important region, our results suggest extensive intermixing of goats mediated by human socio-cultural and economic interactions. These have led to the coexistence of the two haplogroups in different geographic regions in Ethiopia resulting in a large caprine genetic diversity that can be exploited for genetic improvement.

17.
Virol J ; 14(1): 188, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28969654

ABSTRACT

BACKGROUND: Aphids are major vectors of plant viruses. Common bean (Phaseolus vulgaris L.) and maize (Zea mays L.) are important crops that are vulnerable to aphid herbivory and aphid-transmitted viruses. In East and Central Africa, common bean is frequently intercropped by smallholder farmers to provide fixed nitrogen for cultivation of starch crops such as maize. We used a PCR-based technique to identify aphids prevalent in smallholder bean farms and next generation sequencing shotgun metagenomics to examine the diversity of viruses present in aphids and in maize leaf samples. Samples were collected from farms in Kenya in a range of agro-ecological zones. RESULTS: Cytochrome oxidase 1 (CO1) gene sequencing showed that Aphis fabae was the sole aphid species present in bean plots in the farms visited. Sequencing of total RNA from aphids using the Illumina platform detected three dicistroviruses. Maize leaf RNA was also analysed. Identification of Aphid lethal paralysis virus (ALPV), Rhopalosiphum padi virus (RhPV), and a novel Big Sioux River virus (BSRV)-like dicistrovirus in aphid and maize samples was confirmed using reverse transcription-polymerase chain reactions and sequencing of amplified DNA products. Phylogenetic, nucleotide and protein sequence analyses of eight ALPV genomes revealed evidence of intra-species recombination, with the data suggesting there may be two ALPV lineages. Analysis of BSRV-like virus genomic RNA sequences revealed features that are consistent with other dicistroviruses and that it is phylogenetically closely related to dicistroviruses of the genus Cripavirus. CONCLUSIONS: The discovery of ALPV and RhPV in aphids and maize further demonstrates the broad occurrence of these dicistroviruses. Dicistroviruses are remarkable in that they use plants as reservoirs that facilitate infection of their insect replicative hosts, such as aphids. This is the first report of these viruses being isolated from either organism. The BSRV-like sequences represent a potentially novel dicistrovirus infecting A. fabae.


Subject(s)
Aphids/virology , Dicistroviridae/classification , Dicistroviridae/genetics , Farms , Metagenome , Phaseolus/parasitology , Zea mays/parasitology , Animals , Kenya , Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Microbiologyopen ; 6(5)2017 10.
Article in English | MEDLINE | ID: mdl-28639414

ABSTRACT

Endophytic and plant-associated bacteria were isolated from plants and rhizoplane soil of naturally grown Brachiaria grasses at International Livestock Research Institute in Nairobi, Kenya. Eighty-four bacterial strains were isolated from leaf tissues, root tissues, and rhizoplane soil on nutrient agar and 869 media. All bacterial strains were identified to the lowest possible taxonomic unit using 16S rDNA primers and were characterized for the production of Indole-3-acetic acid, hydrogen cyanide, and ACC deaminase; phosphate solubilization; siderophore production; antifungal properties; and plant biomass production. The 16S rDNA-based identification grouped these 84 bacterial strains into 3 phyla, 5 classes, 8 orders, 12 families, 16 genera, and 50 unique taxa. The four most frequently isolated genera were Pseudomonas (23), Pantoea (17), Acinetobacter (9), and Enterobacter (8). The functional characterization of these strains revealed that 41 of 84 strains had a minimum of three plant beneficial properties. Inoculation of maize seedlings with Acinetobacter spp., Microbacterium spp., Pectobacterium spp., Pseudomonas spp., and Enterobacter spp. showed positive effects on seedling biomass production. The ability of Brachiaria grasses to host genetically diverse bacteria, many of them with multiple plant growth-promoting attributes, might have contributed to high biomass production and adaptation of Brachiaria grasses to drought and low fertility soils.


Subject(s)
Bacteria/classification , Bacteria/genetics , Brachiaria/growth & development , Brachiaria/microbiology , Antibiosis , Bacteria/isolation & purification , Bacteria/metabolism , Biodiversity , Computational Biology/methods , DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Metabolomics/methods , Phylogeny , Plant Leaves/microbiology , Plant Roots/growth & development , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Symbiosis
19.
Article in English | MEDLINE | ID: mdl-28105330

ABSTRACT

BACKGROUND: Beta-lactam and quinolone antimicrobials are commonly used for treatment of infections caused by non-typhoidal Salmonella (NTS) and other pathogens. Resistance to these classes of antimicrobials has increased significantly in the recent years. However, little is known on the genetic basis of resistance to these drugs in Salmonella isolates from Ethiopia. METHODS: Salmonella isolates with reduced susceptibility to beta-lactams (n = 43) were tested for genes encoding for beta-lactamase enzymes, and those resistant to quinolones (n = 29) for mutations in the quinolone resistance determining region (QRDR) as well as plasmid mediated quinolone resistance (PMQR) genes using PCR and sequencing. RESULTS: Beta-lactamase genes (bla) were detected in 34 (79.1%) of the isolates. The dominant bla gene was blaTEM, recovered from 33 (76.7%) of the isolates, majority being TEM-1 (24, 72.7%) followed by TEM-57, (10, 30.3%). The blaOXA-10 and blaCTX-M-15 were detected only in a single S. Concord human isolate. Double substitutions in gyrA (Ser83-Phe + Asp87-Gly) as well as parC (Thr57-Ser + Ser80-Ile) subunits of the quinolone resistance determining region (QRDR) were detected in all S. Kentucky isolates with high level resistance to both nalidixic acid and ciprofloxacin. Single amino acid substitutions, Ser83-Phe (n = 4) and Ser83-Tyr (n = 1) were also detected in the gyrA gene. An isolate of S. Miami susceptible to nalidixic acid but intermediately resistant to ciprofloxacin had Thr57-Ser and an additional novel mutation (Tyr83-Phe) in the parC gene. Plasmid mediated quinolone resistance (PMQR) genes investigated were not detected in any of the isolates. In some isolates with decreased susceptibility to ciprofloxacin and/or nalidixic acid, no mutations in QRDR or PMQR genes were detected. Over half of the quinolone resistant isolates in the current study 17 (58.6%) were also resistant to at least one of the beta-lactam antimicrobials. CONCLUSION: Acquisition of blaTEM was the principal beta-lactamase resistance mechanism and mutations within QRDR of gyrA and parC were the primary mechanism for resistance to quinolones. Further study on extended spectrum beta-lactamase and quinolone resistance mechanisms in other gram negative pathogens is recommended.

20.
Parasit Vectors ; 9(1): 353, 2016 06 22.
Article in English | MEDLINE | ID: mdl-27334334

ABSTRACT

BACKGROUND: The ixodid tick Rhipicephalus appendiculatus transmits the apicomplexan protozoan parasite Theileria parva, which causes East coast fever (ECF), the most economically important cattle disease in eastern and southern Africa. Recent analysis of micro- and minisatellite markers showed an absence of geographical and host-associated genetic sub-structuring amongst field populations of R. appendiculatus in Kenya. To assess further the phylogenetic relationships between field and laboratory R. appendiculatus tick isolates, this study examined sequence variations at two mitochondrial genes, cytochrome c oxidase subunit I (COI) and 12S ribosomal RNA (rRNA), and the nuclear encoded ribosomal internal transcribed spacer 2 (ITS2) of the rRNA gene, respectively. RESULTS: The analysis of 332 COI sequences revealed 30 polymorphic sites, which defined 28 haplotypes that were separated into two distinct haplogroups (A and B). Inclusion of previously published haplotypes in our analysis revealed a high degree of phylogenetic complexity never reported before in haplogroup A. Neither haplogroup however, showed any clustering pattern related to either the geographical sampling location, the type of tick sampled (laboratory stocks vs field populations) or the mammalian host species. This finding was supported by the results obtained from the analysis of 12S rDNA sequences. Analysis of molecular variance (AMOVA) indicated that 90.8 % of the total genetic variation was explained by the two haplogroups, providing further support for their genetic divergence. These results were, however, not replicated by the nuclear transcribed ITS2 sequences likely because of recombination between the nuclear genomes maintaining a high level of genetic sequence conservation. CONCLUSIONS: COI and 12S rDNA are better markers than ITS2 for studying intraspecific diversity. Based on these genes, two major genetic groups of R. appendiculatus that have gone through a demographic expansion exist in Kenya. The two groups show no phylogeographic structure or correlation with the type of host species from which the ticks were collected, nor to the evolutionary and breeding history of the species. The two lineages may have a wide geographic distribution range in eastern and southern Africa. The findings of this study may have implications for the spread and control of R. appendiculatus, and indirectly, on the transmission dynamics of ECF.


Subject(s)
Arachnid Vectors/genetics , Genetic Variation , Rhipicephalus/genetics , Animals , Arachnid Vectors/classification , DNA, Ribosomal Spacer/genetics , Electron Transport Complex IV/genetics , Kenya/epidemiology , Phylogeny , RNA, Ribosomal/genetics , Rhipicephalus/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...