Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Turk J Pharm Sci ; 19(6): 642-648, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36544286

ABSTRACT

Objectives: Mushrooms are fungi with nutritional and health benefits. Lentinus squarrosulus Mont., an edible fungus, has traditional usage and relevance in local therapy for managing metabolic diseases. In that view, this study aimed to evaluate the in vitro anti-obesity, anti-diabetic, and cytotoxic potential of the chloroform/methanol extract (CME) and aqueous extract (AE) of the mushroom. Materials and Methods: L. squarrosulus was identified using molecular biology tools. The CME and AE were obtained sequentially and, then, subjected to α-amylase, α-glucosidase, and lipase inhibitory enzyme assays as well as total phenolic content (TPC) and flavonoid content (TFC) estimations. The cytotoxic potential of extract fractions of L. squarrosulus was assessed using the brine shrimp lethality assay. Results: The molecular identification of the mushroom displayed that the internal transcribed spacer sequence was an equivalent match to that of L. squarrosulus with a high percentage similarity, and thus assigned a unique accession number (KT120043.1). The CME of L. squarrosulus had higher TPC, TFC, and α-glucosidase inhibitory activity than AE. Furthermore, AE of the mushroom showed a higher lipase inhibitory potential with an IC50 value of 22.28 ± 0.65 µg/mL than the CME, while that of the reference, i.e. orlistat was 2.28 ± 0.34 µg/mL. However, these extracts exhibited very low or no α-amylase inhibitory and cytotoxic activity at the tested concentrations. Conclusion: This study reveals that CME of L. squarrosulus, rich in polyphenols and flavonoids, possesses considerable α-glucosidase and lipase inhibitory activities.

2.
Nat Prod Res ; 36(18): 4681-4691, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34878952

ABSTRACT

Termitomyces species are known edible mushrooms in Nigeria, believed to have exceptional culinary and nutraceutical properties. Methanol extract from fruiting bodies of Termitomyces robustus was evaluated for antidiabetic activity using in vitro α-amylase and α-glucosidase assays. The isolation and structural elucidation of metabolites from the T. robustus extract afforded five compounds including a new natural product γ-glutamyl-ß-phenylethylamine 3 and four known phenyl derivatives: tryptophan 1, 4-hydroxyphenylacetic acid 2, 4-hydroxyphenylpropionic acid 4, and phenyllactic acid 5. Structures were elucidated from analyses of spectroscopic data (1 D and 2 D NMR, HRESIMS) and all isolated compounds were tested for α-amylase and α-glycosidase inhibitory activity. The in vitro assay established crude extract to possess α- amylase and α-glucosidase inhibition with IC50 of 78.05 µg/mL and 86.10 µg/mL, respectively. The isolated compounds compared favourably with the standard drug, acarbose with IC50 ranging from 6.18-15.08 µg/mL and 18.28-44.63 µg/mL for α-amylase and glucosidase, respectively.


Subject(s)
Agaricales , Termitomyces , Agaricales/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Nigeria , Phenethylamines , Plant Extracts/chemistry , Termitomyces/metabolism , alpha-Amylases , alpha-Glucosidases/metabolism
3.
Virol J ; 18(1): 161, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34348755

ABSTRACT

BACKGROUND: As frequent viral outbreaks continue to pose threat to public health, the unavailability of antiviral drugs and challenges associated with vaccine development underscore the need for antiviral drugs discovery in emergent moments (endemic or pandemic). Plants in response to microbial and pest attacks are able to produce defence molecules such as antimicrobial peptides as components of their innate immunity, which can be explored for viral therapeutics. METHODS: In this study, partially purified peptide-rich fraction (P-PPf) were obtained from aqueous extracts of seven plants by reverse-phase solid-phase extraction and cysteine-rich peptides detected by a modified TLC method. The peptide-enriched fractions and the aqueous (crude polar) were screened for antiviral effect against three non-polio enterovirus species C members using cytopathic effect reduction assay. RESULTS: In this study, peptide fraction obtained from Euphorbia hirta leaf showed most potent antiviral effect against Coxsackievirus A13, Coxsackievirus A20, and Enterovirus C99 (EV-C99) with IC50 < 2.0 µg/mL and selective index ≥ 81. EV-C99 was susceptible to all partially purified peptide fractions except Allamanda blanchetii leaf. CONCLUSION: These findings establish the antiviral potentials of plants antimicrobial peptides and provides evidence for the anti-infective use of E. hirta in ethnomedicine. This study provides basis for further scientific investigation geared towards the isolation, characterization and mechanistic pharmacological study of the detected cysteine-rich peptides.


Subject(s)
Antiviral Agents , Enterovirus , Euphorbia/chemistry , Peptides , Plant Extracts/pharmacology , Antiviral Agents/pharmacology , Cysteine , Cytopathogenic Effect, Viral , Enterovirus/drug effects , Enterovirus Infections , Humans , Nigeria , Peptides/pharmacology , Serogroup
4.
Mycology ; 10(3): 166-173, 2019.
Article in English | MEDLINE | ID: mdl-31448150

ABSTRACT

Mushrooms are cherished as sources of food, nutrients and medicine. Inadequate data on the identity and medicinal properties of many wild Nigerian mushrooms has limited their utilization. This work was carried out to identify and authenticate a puffball mushroom using molecular tools and investigate its antidiabetic properties. Taxonomic guides were employed in morphological identifying the mushroom as Lycoperdon umbrinum, methanol extract of fruiting bodies was evaluated for antidiabetic activity using in vitro α-amylase assay and in vivo activity in the alloxan-induced diabetic rat model. The macro fungus was identified using Internal Transcribed Spacers (ITS) sequence analysis after which sequences generated were compared using the basic local alignment search tool (BLAST) at NCBI GenBank. In the acute in vivo test, the 400 mg/kg dose showed the best activity with percentage reduction in blood glucose 29.3%, compared with 5 mg/kg glibenclamide at 15%. The in vitro assay established that the extract possessed potent activity with IC50 of 0.46 µg/mL compared to its DCM, butanol fractions and acarbose (IC50 5.3 µg/mL, 5.6 µg/mL, 45 µg/mL) respectively. BLAST analysis revealed the mushroom (accession number, KRO78278.1) to show 98% identity to Calvatia gigantea. The study established the identity of this mushroom and confirmed its antidiabetic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...