Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 7808, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33833271

ABSTRACT

Novel biosorbents were derived from a waste product of palm kernel oil extraction known as palm kernel chaff (PKC). One portion of the PKC was carbonized in a furnace and then activated chemically, while the other half was activated without carbonization. Both were designated as CPKC and UPKC, respectively. The two biosorbents so produced were then used to conduct batch equilibrium and kinetic sorption studies at 30 °C, 35 °C and 40 °C and pH 3.0 and 9.0 for an agitation period of 5, 10, 20, 40, 60, 90, and 120 min. The Koble-Corrigan, Dubinin-Radushkevich, and the Freundlich isotherms fitted the experimental data very well with R2 values of 0.97 to 1.0, 0.95 to 1.0, and 0.96 to 1.0, respectively. The linear type II Langmuir isotherm performed much better (0.96 ≤ R2 ≤ 1.0) than the nonlinear isotherm. The maximum sorption capacity was obtained as 120.6 mg/g using CPKC at pH 9.0 and 35 °C. The Langmuir separation coefficient values (0.022 ≤ RL ≤ 0.926) show that the sorption of nickel to PKC is favorable. The most favorable sorption condition was found for CPKC at pH 9 and temperature of 40 °C. The values of sorption energy (8.21 ≤ E ≤ 14.27) and the isosteric heat of sorption (-133.09 ≤ ∆Hx ≤ -17.92) indicate that the mode of sorption is mostly ion exchange. Thermodynamic parameters also show that the process is exothermic and entropy-driven. The pseudo-second-order kinetic model shows the best correlation compared to the other kinetic models. The coefficient of correlation for the pseudo-second-order model was mostly within the range of 0.999-1.000 for 90% of all kinetic studies carried out.

2.
Environ Sci Pollut Res Int ; 28(15): 19439-19457, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398762

ABSTRACT

Improper waste management has assumed a worrisome dimension in cities across many developing countries. One of its commonest features is open dumps. Open dumps in Enugu and Nsukka were investigated in this study. Waste samples were collected from ten dumps located in low-income, low-to-middle income, and high-income zones of the study area. The composition of waste was determined following standard methods and results obtained subjected to statistical analyses. Selected open dumps were subjected to detailed inspection in order to identify possible environmental impacts. Soil samples were also collected from the top soil and subsoil (15 cm) of selected dumps and analyzed for As, Cd, Cr, Cu, Hg, Mn, Pb, Ni, Cd, and Zn. The sources of contamination were determined using the principal component analysis (PCA) and cluster analysis (CA). Results of heavy metal analyses were used to determine extent of soil pollution. Food waste ranged from 29.6 to 56.5% with an average of 42.2%. Analysis along income line showed a decline in the proportion of food and rubber waste from lower to high income. The order of heavy metals concentration in waste dump soils investigated was as follows: Mn > Zn > Cu > Cr > Pb > As > Ni > Cd > Hg. The pollution indices (PI) of the dumpsites ranged from 1.87 for Ni to 1634.6 for Cu in the topsoil, and 0.62 for Ni to 1354.74 for Cu in the subsoil, indicating a severe level of pollution. Pollution load index (PLI) ranged from 25.38 to 75.07 with a mean of 60.75 for the dump surface and from 51.46 to 21.7 with a mean of 33.86 below the dump soil. Forty-three percent (43%) of the topsoil and 40% of the subsoil exhibited ecological risk index values greater than 320, indicating extreme degree of ecological risk. The first principal and second principal components with 36% and 28.2% variance respectively represent the growing impact of electronic waste disposal, specifically mobile phones, personal computers, and other potable electronic devices with short life span on waste dumps. The third principal component (10.2%) represents input from households and other forms of chemicals such as insecticides, paints, and detergents.


Subject(s)
Metals, Heavy , Refuse Disposal , Soil Pollutants , China , Cities , Environmental Monitoring , Food , Metals, Heavy/analysis , Nigeria , Risk Assessment , Soil , Soil Pollutants/analysis , Solid Waste
3.
Data Brief ; 30: 105344, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32215299

ABSTRACT

The on-site collection of data is not only time consuming, but expensive and perhaps near impossible in restive communities within the upper Cross River basin (UCRB). Therefore, the importance of this data cannot be overemphasized. This article presents a Digital Elevation Model (DEM), land use and land cover (LULC) map, soil map, geology map and climatic datasets which enhance the understanding of the physical characteristics of the upper Cross River basin using morphometric analysis. The use of the LULC map, soil map and the DEM in conjunction with the climatic data enhance the creation of the Hydrologic Response Units (HRUs) and the water balance modelling. The simulation of the water balance at the HRU level enables the routing of the runoff to the reaches of the sub-basins and then to the channels. The geology map provides confirmatory information to the morphometric analysis. The compound factor computed from all the derived morphometric parameters enhance the determination of the overall flood potential of the congruent sub-basins.

4.
Chemosphere ; 239: 124770, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31726525

ABSTRACT

Over twenty thousand persons rely on water from Atuwara River for drinking and other domestic purposes, hence the need to ascertain the human health risk inherent in such practice. Seventy-two water samples were collected from River Atuwara during the dry and wet seasons of 2018, and the concentration of heavy metals (Pb, As, Ni, Cr, Zn, Cu, and Cd) were measured using ICP-OES. A newly developed human health risk assessment method, HHRISK code was used to estimate the health risks associated with consumption of water from Atuwara River. Results obtained revealed that the concentration of heavy metals in the river was as follows: Cd < Ni < Pb < Cr < Cu < As < Zn in the wet season and Cd < Pb < Ni < Cu < Cr < As < Zn during the dry season. Principal component analysis suggested that industrial effluents, agricultural activities and base-rock interaction are responsible for pollution of Atuwara River. The cumulative hazard index (HIcum) obtained was 678.0 ±â€¯36.8 (for adult) and 1392.0 ±â€¯132 (for child) for non-carcinogenic risks. A cumulative carcinogenic risk (CRcum) of 1.01E-1±5.26E-3 and 4.96E-2±5.05E-3 was obtained for adult and children respectively, suggesting that up to 1 in 10 adults and 1 in 20 children may suffer from cancer over their lifetime as a result of consumption and exposure to water from River Atuwara. These results highlight the fact that unavailability of safe drinking water in many parts of the world remains a real and persistent risk which must be tackled.


Subject(s)
Drinking Water/chemistry , Environmental Monitoring/methods , Metals, Heavy/analysis , Trace Elements/analysis , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/analysis , Adult , Agriculture , Child , Humans , Nigeria , Principal Component Analysis , Risk Assessment , Rivers , Seasons , Water Quality
5.
Sci Rep ; 9(1): 15920, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685938

ABSTRACT

The study investigated the concentration of potentially toxic heavy metals (PTHM) in groundwater sources (hand-dug wells and boreholes), spatial distribution, source apportionment, and health risk impact on local inhabitants in Ogun state. One hundred and eight water samples from 36 locations were analysed for Cr, Ni, Pb, Fe, Mn, Mg, Ca and Al. Mean values of 0.013, 0.003, 0.010, 0.088, 0.004 and 3.906 mg/L were obtained for Pb, Cr, Ni, Fe, Mn, and Al respectively at Iju district. Meanwhile, the average values of Pb, Ni, Fe, Mn, and Al concentrations at Atan district were 0.008, 0.0023, 0.011, 0.003, and 1.319 mg/L respectively. Results also revealed that the 44.4% and 11.13% of the borehole and well-water samples surpassed the World Health Organization limits for Pb at Atan. In Iju, the concentration of Pb and Al were relatively high, exceeding the stipulated standard in 100% of the samples. The Multivariate statistical analysis employed produced principal factors that accounted for 78.674% and 86.753% of the variance at Atan and Iju region respectively. Based on this, PTHM were traced to geogenic sources (weathering, dissolution, leaching) and anthropogenic emissions from industrial activities. In addition, the hazard quotient values obtained from the health risk assessment identified potential non-carcinogenic risk due to Pb via ingestion route. Ni was found to have high carcinogenic risk on adult and children, having exceeded the threshold limit. The outcome of the carcinogenic risk assessment revealed that 88.67% (for adults) and 1.12% (for children) of the cancer risk values surpassed the specified limits at Iju, whereas the cancer risk values were considerably lesser at Atan. In conclusion, the report of this study should serve as a beacon that will spark up strategic planning, comprehensive water resource management, and extensive treatment schemes in order to address the health complications linked with environmental pollution.

6.
Environ Monit Assess ; 191(6): 338, 2019 May 03.
Article in English | MEDLINE | ID: mdl-31053983

ABSTRACT

Bernoulli's equation was applied to a section of hopper collector to determine the appropriate dimensions of the hopper for rainwater harvesting. Also, the hopper surface area (SFA) for a given volume was minimized by differentiating it in relation to the slant angle (SA). Combining the rational formula-Manning's equation and the best hydraulic section criteria-expressions were obtained for the optimum sizes of rectangular and circular gutters. Minimum hopper SFA for a given volume was found to occur at an optimum hopper SA of 35.282°. With the optimum conditions, design charts were produced for the hopper, circular, and rectangular roof gutters. The ratio of hopper larger radius to the smaller radius designated as (α) gave hopper dimensions with excessively wide upper radius for values of 0.1 ≤ α ≤ 0.2. Alpha (α) values of 0.8 and 0.9 gave values of R and Z which are almost too close to be distinguished. The valid range of α for hopper design was found to be 0.292 ≤ α ≤ 0.8. The study revealed that roof plan area has more effect on hopper dimensions than gutter slope. In addition, the case of excessive long gutters can be addressed by placing the hopper at the lateral epicenter of the eaves. In this regard, regions with abundant rainfall can solve water scarcity issues if proper design parameters of RWH components are considered in order to avoid waste of water through the overflow of water collection systems.


Subject(s)
Algorithms , Housing , Water Supply , Rain , Water
7.
Environ Monit Assess ; 190(7): 440, 2018 Jun 28.
Article in English | MEDLINE | ID: mdl-29955980

ABSTRACT

Groundwater pollution resulting from anthropogenic activities and poor effluent management is on the rise in Nigeria. Hence, groundwater used for domestic purposes is questionable and therefore calls for scientific scrutiny. Investigation of hydrochemical interactions and quality of groundwater resource is essential in order to monitor and identify sources of water pollutants. As a result, groundwater samples were collected from 21 locations in Abeokuta South, Nigeria and analyzed for physicochemical parameters using standard methods. Results obtained were subjected to hydrochemical and geospatial analyses. Water quality parameters investigated exhibited wide variations from location to location. Fe2+, Mg2+, SO42-, Cl-, total hardness (TH), Mn, Na+, NO3-, SiO2, and alkalinity exhibited the highest levels of variation with coefficients of variation of 131.3, 92.8, 83.9, 76.7, 65.9, 64.3, 57.6, 57.2, 57.0, and 52.5, respectively. The average pH value was 6.76 with 71% of the water samples being slightly acidic. Na2+, Mg2+, Fe2+, and EC contents exhibited the most violation of drinking water standards with percent violations of 100, 52.4, 47.6, and 47.6%, respectively. Parameters, such as Mn, Ca2+, NO3-, and CO32-, were within the WHO guideline values for drinking water in all the samples. The highest level of significant correlation was found to exist between Na+ and Cl- (r = 0.84, α = 0.01). Six principal components, which explained 83.5% of the variation in water quality, were extracted with the first (34.1%) and second components (15.7%) representing the influence of mineral dissolution and anthropogenic practices, respectively, on the hydrochemistry of the area. Four hydrochemical clusters were identified with distinctly partitioned water quality. Further analysis revealed that 38, 29, 24, and 9% of the samples were the Na-K-HCO3, Na-K-Cl-SO4, Ca-Mg-HCO3, and Ca-Mg-Cl-SO4 types, respectively. Anthropogenic activities are increasing threat to groundwater quality in the study location and therefore call for urgent attention. There is also a need for routine monitoring of groundwater in Abeokuta.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Water Pollutants/analysis , Drinking Water/chemistry , Nigeria , Silicon Dioxide/analysis , Water Pollutants, Chemical/analysis , Water Quality/standards
8.
Article in English | MEDLINE | ID: mdl-25789167

ABSTRACT

BACKGROUND: Improper waste disposal is responsible for the contamination of both surface and ground water resources. Heavy metals leached from improperly disposed solid waste constitute grave environmental and health hazards because of their toxic and persistent nature. There are thousands of open dumps in Nigeria one of which is the Enugu State Waste Management Authority dumpsite. METHOD: Forty sampling nodes were systematically established around the Enugu State waste Management Authority central dumpsite located at Ugwuaji, Enugu State, Nigeria. Ten heavy metals (arsenic, cadmium, cobalt, copper, chromium, iron, lead, manganese, nickel and zinc) were sampled at different depths of each node in both rainy and dry seasons. RESULT: Iron and lead were the predominant metals in the vicinity of the waste dump with average values of 132.10 mg/kg and 117.52 mg/kg respectively. The order of abundance of the ten heavy metals monitored is Pb > Fe > As > Zn > Cu > Co > Ni > Cd > Cr > Mn. Generally, there was significant correlation (0.25 to 0.74) among all the metals except between cobalt and manganese in the rainy season. In the dry season, all the metals were significantly correlated (0.29 to 0.813) except for copper and lead, copper and arsenic, zinc and arsenic, and cobalt and manganese. The concentrations of most of the heavy metals approached a constant level at a depth of 1 m. On the other hand, the concentrations of arsenic, cobalt and iron continued to decrease even at a depth of 2 m. The pollution loading index values for the soil are 1.706 for rainy season and 2.54 for dry season. CONCLUSION: The high pollution loading index represents a significant level of deterioration. It can be concluded that the dumpsite constitute a serious environmental and health hazard.

SELECTION OF CITATIONS
SEARCH DETAIL
...