Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675653

ABSTRACT

Leishmaniasis, an infectious disease caused by pathogenic Leishmania parasites, affects millions of people in developing countries, and its re-emergence in developed countries, particularly in Europe, poses a growing public health concern. The limitations of current treatments and the absence of effective vaccines necessitate the development of novel therapeutics. In this study, we focused on identifying small molecule inhibitors which prevents the interaction between peroxin 5 (PEX5) and peroxisomal targeting signal 1 (PTS1), pivotal for kinetoplastid parasite survival. The Leishmania donovani PEX5, containing a C-terminal tetratricopeptide repeat (TPR) domain, was expressed and purified, followed by the quantification of kinetic parameters of PEX5-PTS1 interactions. A fluorescence polarization-based high-throughput screening assay was developed and small molecules inhibiting the LdPEX5-PTS1 interaction were discovered through the screening of a library of 51,406 compounds. Based on the confirmatory assay, nine compounds showed half maximal inhibitory concentration (IC50) values ranging from 3.89 to 24.50 µM. In silico docking using a homology model of LdPEX5 elucidated that the molecular interactions between LdPEX5 and the inhibitors share amino acids critical for PTS1 binding. Notably, compound P20 showed potent activity against the growth of L. donovani promastigotes, L. major promastigotes, and Trypanosoma brucei blood stream form, with IC50 values of 12.16, 19.21, and 3.06 µM, respectively. The findings underscore the potential of targeting LdPEX5-PTS1 interactions with small molecule inhibitors as a promising strategy for the discovery of new anti-parasitic compounds.


Subject(s)
High-Throughput Screening Assays , Leishmania donovani , Molecular Docking Simulation , Peroxisome-Targeting Signal 1 Receptor , Protozoan Proteins , Leishmania donovani/drug effects , Leishmania donovani/metabolism , High-Throughput Screening Assays/methods , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisome-Targeting Signal 1 Receptor/chemistry , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Fluorescence Polarization/methods , Protein Binding , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/chemistry , Humans
2.
Pathogens ; 13(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535556

ABSTRACT

The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis (VL), a potentially fatal disease if left untreated. Given the limitations of current therapies, there is an urgent need for new, safe, and effective drugs. To discover novel antileishmanial compounds from previously unexplored chemical spaces, we conducted a high-throughput screening (HTS) of 2562 natural compounds, assessing their activity against L. donovani promastigotes and intracellular amastigotes. Utilizing the criteria of ≥70% parasite growth inhibition and ≥70% host cell (THP-1) viability, we selected 100 inhibitors for half-maximal inhibitory concentration (IC50) value determination. Twenty-six compounds showed activities in both forms of Leishmania with a selectivity index of over 3. Clustering analysis resulted in four chemical clusters with scaffolds of lycorine (cluster 1), 5-hydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromene-4,8-dione (cluster 2), and semi-synthetic derivatives of ansamycin macrolide (cluster 4). The enantiomer of lycorine, BMD-NP-00820, showed the highest anti-amastigote activity with an IC50 value of 1.74 ± 0.27 µM and a selectivity index (SI) > 29. In cluster 3, the most potent compound had an IC50 value of 2.20 ± 0.29 µM with an SI > 23, whereas in cluster 4, with compounds structurally similar to the tuberculosis drug rifapentine, BMD-NP-02085 had an IC50 value of 1.76 ± 0.28 µM, but the SI value was 7.5. Taken together, the natural products identified from this study are a potential source for the discovery of antileishmanial chemotypes for further development.

3.
PLoS One ; 19(2): e0298087, 2024.
Article in English | MEDLINE | ID: mdl-38335219

ABSTRACT

Malaria eradication efforts in resource-limited areas require a rapid, economical, and accurate tool for detecting of the low parasitemia. The malaria rapid diagnostic test (mRDT) is the most suitable for on-site detection of the deadliest form of malaria, Plasmodium falciparum. However, the deletions of histidine rich protein 2 and 3 genes are known to compromise the effectiveness of mRDT. One of the approaches that have been explored intensively for on-site diagnostics is the loop-mediated isothermal amplification (LAMP). LAMP is a one-step amplification that allows the detection of Plasmodium species in less than an hour. Thus, this study aims to present a new primer set to enhance the performance of a colorimetric LAMP (cLAMP) for field application. The primer binding regions were selected within the A-type of P. falciparum 18S rRNA genes, which presents a dual gene locus in the genome. The test result of the newly designed primer indicates that the optimal reaction condition for cLAMP was 30 minutes incubation at 65°C, a shorter incubation time compared to previous LAMP detection methods that typically takes 45 to 60 minutes. The limit of detection (LoD) for the cLAMP using our designed primers and laboratory-grown P. falciparum (3D7) was estimated to be 0.21 parasites/µL which was 1,000-fold higher than referencing primers. Under optimal reaction condition, the new primer sets showed the sensitivity (100%, 95% CI: 80.49-100%) and specificity (100%, 95% CI: 94.64-100%) with 100% (95% CI: 95.70-100%) accuracy on the detection of dried blood spots from Malawi (n = 84). Briefly, the newly designed primer set for P. falciparum detection exhibited high sensitivity and specificity compared to referenced primers. One great advantage of this tool is its ability to be detected by the naked eye, enhancing field approaches. Thus, this tool has the potential to be effective for accurate early parasite detection in resource-limited endemic areas.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Plasmodium falciparum/genetics , Colorimetry , Sensitivity and Specificity , Malaria/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods
4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-38004459

ABSTRACT

A series of rosmarinic acid-ß-amino-α-ketoamide hybrids were synthesized and rationally repurposed towards the identification of new antileishmanial hit compounds. Two hybrids, 2g and 2h, showed promising activity (IC50 values of 9.5 and 8.8 µM against Leishmania donovani promastigotes, respectively). Their activities were comparable to erufosine. In addition, cytotoxicity evaluation employing human THP-1 cells revealed that the two hybrids 2g and 2h possess no cytotoxic effects up to 100 µM, while erufosine possessed cytotoxicity with CC50 value of 19.4 µM. In silico docking provided insights into structure-activity relationship emphasizing the importance of the aliphatic chain at the α-carbon of the cinnamoyl carbonyl group establishing favorable binding interactions with LdCALP and LARG in both hybrids 2g and 2h. In light of these findings, hybrids 2g and 2h are suggested as potential safe antileishmanial hit compounds for further development of anti-leishmanial agents.

5.
ACS Infect Dis ; 9(12): 2583-2592, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38014824

ABSTRACT

To date, Leishmania spp. vaccine studies have mainly focused on cellular immunity induction, which plays a crucial role in host protection. In contrast, vaccine-induced humoral immunity is largely neglected. Virus-like particle (VLP) vaccines generated using the baculovirus expression system are well-known inducers of humoral immunity and would serve as a suitable platform for evaluating humoral immunity-mediated protection against visceral Leishmaniasis. In this study, we investigated the humoral immunity evoked through VLPs expressing the L. donovani promastigote surface antigen (PSA-VLPs) and assessed their contribution to protection in mice. PSA-VLPs vaccines were generated using the baculovirus expression system and used for mouse immunizations. Mice were intramuscularly immunized twice with PSA-VLPs and challenged with L. donovani to confirm vaccine-induced protective immunity. PSA-VLP immunization elicited parasite-specific antibody responses in the sera of mice, which were induced in a dose-dependent manner. B cell, germinal center B cell, and memory B cell responses in the spleen were found to be higher in vaccinated mice compared to unimmunized controls. PSA-VLP immunization diminished the production of pro-inflammatory cytokines IFN-γ and IL-6 in the liver. Overall, the PSA-VLPs conferred protection against L. donovani challenge infection by reducing the total parasite burden within the internal organs. These results suggest that PSA-VLPs induced protective immunity against the L. donovani challenge infection.


Subject(s)
Leishmania donovani , Leishmaniasis Vaccines , Vaccines, Virus-Like Particle , Humans , Male , Animals , Mice , Immunity, Humoral , Prostate-Specific Antigen , Antigens, Protozoan/genetics , Antigens, Surface
6.
Bioorg Chem ; 141: 106890, 2023 12.
Article in English | MEDLINE | ID: mdl-37783099

ABSTRACT

Conformational restriction was addressed towards the development of more selective and effective antileishmanial agents than currently used drugs for treatment of Leishmania donovani; the causative parasite of the fatal visceral leishmaniasis. Five types of cyclopentane-based conformationally restricted miltefosine analogs that were previously explored in literature as anticancer AKT-inhibitors were reprepared and repurposed as antileishmanial agents. Amongst, positions-1 and 2 cis-conformationally-restricted compound 1a and positions-2 and 3 trans-conformationally-restricted compound 3b were highly potent eliciting sub-micromolar IC50 values for inhibition of infection and inhibition of parasite number compared with the currently used miltefosine drug that showed low micromolar IC50 values for inhibition of infection and inhibition of parasite number. Compounds 1a and 3b eradicated the parasite without triggering host cells cytotoxicity over more than one log concentration interval which is a superior performance compared to miltefosine. In silico studies suggested that conformational restriction conserved the conformer capable of binding LdAKT-like kinase while it might be possible that it excludes other conformers mediating undesirable effects and/or toxicity of miltefosine. Together, this study presents compounds 1a and 3b as antileishmanial agents with superior performance over the currently used miltefosine drug.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Proto-Oncogene Proteins c-akt , Cyclopentanes/pharmacology , Drug Repositioning , Antiprotozoal Agents/chemistry
7.
J Enzyme Inhib Med Chem ; 38(1): 2229071, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37381756

ABSTRACT

A chromone-peptidyl hybrids series was synthesised and rationally repurposed towards identification of potential antileishmanial hits against visceral leishmaniasis. Three hybrids 7c, 7n, and 7h showed potential IC50 values (9.8, 10, and 12 µM, respectively) which were comparable to erufosine IC50 (9.8 µM) but lower potency than miltefosine IC50 (3.5 µM). Preliminary assessment of cytotoxicity using human THP-1 cells presented chromone-peptidyl hybrids 7c and 7n as non-cytotoxic up to 100 µM while erufosine and miltefosine had CC50 of 19.4 µM and >40 µM, respectively. In silico studies pinpointed the N-p-methoxyphenethyl substituent at the peptidyl moiety together with the oxygen-based substituted functions of the phenyl ring of the chromone moiety as crucial players in binding to LdCALP. Together, these findings present chromone-peptidyl hybrids 7c and 7n as potential and anticipated non-cytotoxic antileishmanial hit compounds for possible development of potential antileishmanial agents against visceral leishmaniasis.


Subject(s)
Leishmania donovani , Leishmaniasis, Visceral , Humans , Chromones
8.
Eur J Med Chem ; 251: 115256, 2023 May 05.
Article in English | MEDLINE | ID: mdl-36944273

ABSTRACT

Up to date, there are still significantly unmet clinical needs for treatment of the fatal visceral leishmaniasis; a neglected tropical disease. Herein, a recently reported antileishmanial hit sulfuretin analog suffering from a low potency and a problematic aqueous solubility that hindered further development was used as a starting point. A mitigation rational via incorporation of O6-aminoalkyl moiety suggest structures analogous to literature-known compounds as cholinesterase inhibitors. Consequently, preparation and repurposing of a library of these compounds unveiled their potential activity against the parasite Leishmania donovani promastigotes. Further evaluation against intracellular form of the parasite and host cells suggested compounds 2a, 2c, and 2o derived from sulfuretin analogs bearing 2'-methoxy or 2',5'-dimethoxy substituents at ring-B as promising lead compounds with potential activity and acceptable safety window relative to the standard edelfosine. In silico simulation predicted plausible binding modes of these compounds to L. donovani fumarate reductase. Together this work presents compound 2o as a potential lead compound for further development.


Subject(s)
Antiprotozoal Agents , Benzofurans , Leishmania donovani , Leishmaniasis, Visceral , Humans , Antiprotozoal Agents/chemistry , Benzofurans/metabolism , Flavonoids/therapeutic use , Leishmaniasis, Visceral/drug therapy , Alkanes/chemistry
9.
Eur J Med Chem ; 250: 115211, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36827952

ABSTRACT

Amongst different forms of leishmaniasis, visceral leishmaniasis caused by L. donovani is highly mortal. Identification of new hit compounds might afford new starting points to develop novel therapeutics. In this lieu, a rationally designed small library of bestatin analogs-4-quinolone hybrids were prepared and evaluated. Analysis of SAR unveiled distinct profiles for hybrids type 1 and type 2, which might arise from their different molecular targets. Amongst type 1 bestatin analog-4-quinolone hybrids, hybrid 1e was identified as potential hit inhibiting growth of L. donovani promastigotes by 91 and 53% at 50 and 25 µM concentrations, respectively. Meanwhile, hybrid 2j was identified amongst type 2 bestatin analog-4-quinolone hybrids as potential hit compound inhibiting growth of L. donovani promastigotes by 50 and 38% at 50 and 25 µM concentrations, respectively. Preliminary safety evaluation of the promising hit compounds showed that they are 50-100 folds safer against human derived monocytic THP-1 cells relative to the drug erufosine. In silico study was conducted to predict the possible binding of hybrid 1e with methionine aminopeptidases 1 and 2 of L. donovani. Molecular dynamic simulations verified the predicted binding modes and provide more in depth understanding of the impact of hybrid 1e on LdMetAP-1 and LdMetAP-2.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Quinolones , Humans , Quinolones/therapeutic use , Drug Repositioning , Leishmaniasis, Visceral/drug therapy , Antiprotozoal Agents/chemistry , 4-Quinolones
10.
ACS Infect Dis ; 9(2): 342-364, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36706233

ABSTRACT

SQ109 is a tuberculosis drug candidate that has high potency against Mycobacterium tuberculosis and is thought to function at least in part by blocking cell wall biosynthesis by inhibiting the MmpL3 transporter. It also has activity against bacteria and protozoan parasites that lack MmpL3, where it can act as an uncoupler, targeting lipid membranes and Ca2+ homeostasis. Here, we synthesized 18 analogs of SQ109 and tested them against M. smegmatis, M. tuberculosis, M. abscessus, Bacillus subtilis, and Escherichia coli, as well as against the protozoan parasites Trypanosoma brucei, T. cruzi, Leishmania donovani, L. mexicana, and Plasmodium falciparum. Activity against the mycobacteria was generally less than with SQ109 and was reduced by increasing the size of the alkyl adduct, but two analogs were ∼4-8-fold more active than SQ109 against M. abscessus, including a highly drug-resistant strain harboring an A309P mutation in MmpL3. There was also better activity than found with SQ109 with other bacteria and protozoa. Of particular interest, we found that the adamantyl C-2 ethyl, butyl, phenyl, and benzyl analogs had 4-10× increased activity against P. falciparum asexual blood stages, together with low toxicity to a human HepG2 cell line, making them of interest as new antimalarial drug leads. We also used surface plasmon resonance to investigate the binding of inhibitors to MmpL3 and differential scanning calorimetry to investigate binding to lipid membranes. There was no correlation between MmpL3 binding and M. tuberculosis or M. smegmatis cell activity, suggesting that MmpL3 is not a major target in mycobacteria. However, some of the more active species decreased lipid phase transition temperatures, indicating increased accumulation in membranes, which is expected to lead to enhanced uncoupler activity.


Subject(s)
Malaria , Mycobacterium abscessus , Mycobacterium tuberculosis , Parasites , Tuberculosis , Animals , Humans , Antitubercular Agents/pharmacology , Parasites/metabolism , Bacterial Proteins/metabolism , Tuberculosis/microbiology , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Lipids
11.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203471

ABSTRACT

Madurastatins are a group of pentapeptides containing an oxazoline moiety, and, in a few cases, an imidazolidinone ring as an additional structural feature. In our search for new potential antiparasitic metabolites from natural sources, we studied the acetone extracts from a culture of Actinomadura sp. CA-135719. The LC/HRMS analysis of this extract identified the presence of the known madurastatins C1 (1), D1 (4), and D2 (5) together with additional members of the family that were identified as the new madurastatins H2 (2) and 33-epi-D1 (3) after isolation and spectroscopic analysis. The planar structures of the new compounds were established by HRMS, ESI-qTOF-MS/MS, and 1D and 2D NMR data, and their absolute configuration was proposed using Marfey's and bioinformatic analyses of the biosynthetic gene cluster (BGC). A revision of the absolute configuration of madurastatins D1 and D2 is proposed. Additionally, madurastatins containing imidazolidinone rings are proved to be artifacts originating during acetone extraction of the bacterial cultures.


Subject(s)
Acetone , Biological Products , Solvents , Tandem Mass Spectrometry , Antiparasitic Agents
12.
Biochem Biophys Res Commun ; 637: 308-313, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36413853

ABSTRACT

Leishmaniasis is an infectious disease caused by obligate intracellular protozoa of the genus Leishmania with high infection and death rates in developing countries. New drugs with better pharmacological performance with regards to safety, efficacy, toxicity, and drug resistance than those/the ones currently used are urgently needed. Trypanothione synthetase (TryS) is an attractive target for the development of drugs against leishmaniasis because it is specific and essential to kinetoplastid parasites. In this study, Leishmaniamajor TryS was expressed and purified, and the kinetic parameters of purified TryS were determined. To identify novel inhibitors of LmTryS, a high-throughput screening (HTS) assay was developed and used to screen a library of 35,040 compounds. In the confirmatory assay, 42 compounds displayed half maximal inhibitory concentration (IC50) values < 50 µM and six of them corresponded to novel structures with IC50 ranging from 9 to 19 µM against LmTryS enzyme activity. Of the six inhibitors, TS001 showed the highest activity against growth of L. major promastigotes, L. donovani promastigotes, and Trypanosoma brucei brucei Lister 427 with IC50 values of 17, 26, and 31 µM, respectively. An in silico docking study using a homology model of LmTryS predicted the molecular interactions between LmTryS and the inhibitors.


Subject(s)
Amide Synthases , Antiprotozoal Agents , Leishmania major , Amide Synthases/antagonists & inhibitors , Gene Library , High-Throughput Screening Assays , Leishmania major/drug effects , Leishmania major/enzymology , Antiprotozoal Agents/pharmacology
13.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36145279

ABSTRACT

Direct growth inhibition of infectious organisms coupled with immunomodulation to counteract the immunosuppressive environment might be a beneficial therapeutic approach. Herein, a library of sulfuretin analogs were developed with potential capabilities to inhibit production of the immunosuppressive PGE2 and elicit direct growth inhibition against Leishmania donovani; the major causative agent of the fatal visceral leishmaniasis. Amongst explored library members bearing diverse methoxy and/or hydroxy substitution patterns at rings B and A, analog 1i retaining the C6-hydroxy moiety at ring-A, but possessing methoxy moieties in place of the polar dihydroxy moieties of sulfuretin ring-B, as well as analog 1q retaining the sulfuretin's polar dihydroxy moieties at ring-B, but incorporating a C6-methoxy moiety instead of the C6-hydroxy moiety at ring-A, were the most promising hit compounds. Cytotoxicity evaluation suggested that analog 1i possesses a safety profile inducing the death of the parasite rather than host cells. In silico simulation provided insights into their possible binding with Leishmania donovani fumarate reductase. The current investigation presents sulfuretin analogs 1i and 1q as potential hit compounds for further development of multifunctional therapeutic agents against visceral leishmaniasis.

14.
Eur J Med Chem ; 240: 114577, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35810535

ABSTRACT

Visceral leishmaniasis is a potentially fatal disease caused by the parasitic protists, Leishmania donovani and L. infantum. Current treatments remain unsuitable due to cost, the need for hospitalization, variable efficacy against different species, toxicity and emerging resistance. Herein, we report the SAR exploration of the novel hit 4-Fluoro-N-(5-(4-methoxyphenyl)-1-methyl-1H-imidazole-2-yl)benzamide [1] previously identified from a high throughput screen against Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani. An extensive and informative set of analogues were synthesized incorporating key modifications around the scaffold resulting in improved potency, whilst the majority of compounds maintained low cytotoxicity against human THP-1 macrophages that are target cells for these pathogens. New lead compounds identified within this study also maintained desirable physicochemical properties, improved metabolic stability in vitro and displayed no significant mitotoxicity against HepG2 cell lines. This compound class warrants continued investigation towards development as a novel treatment for Visceral Leishmaniasis.


Subject(s)
Antiprotozoal Agents , Leishmania donovani , Leishmaniasis, Visceral , Trypanosoma cruzi , Antiprotozoal Agents/chemistry , Humans , Imidazoles/therapeutic use , Leishmaniasis, Visceral/drug therapy
15.
PLoS Negl Trop Dis ; 16(6): e0010492, 2022 06.
Article in English | MEDLINE | ID: mdl-35737709

ABSTRACT

Plasmodium vivax is the most widespread cause of human malaria. Recent reports of drug resistant vivax malaria and the challenge of eradicating the dormant liver forms increase the importance of vaccine development against this relapsing disease. P. vivax reticulocyte binding protein 1a (PvRBP1a) is a potential vaccine candidate, which is involved in red cell tropism, a crucial step in the merozoite invasion of host reticulocytes. As part of the initial evaluation of the PvRBP1a vaccine candidate, we investigated its genetic diversity and antigenicity using geographically diverse clinical isolates. We analysed pvrbp1a genetic polymorphisms using 202 vivax clinical isolates from six countries. Pvrbp1a was separated into six regions based on specific domain features, sequence conserved/polymorphic regions, and the reticulocyte binding like (RBL) domains. In the fragmented gene sequence analysis, PvRBP1a region II (RII) and RIII (head and tail structure homolog, 152-625 aa.) showed extensive polymorphism caused by random point mutations. The haplotype network of these polymorphic regions was classified into three clusters that converged to independent populations. Antigenicity screening was performed using recombinant proteins PvRBP1a-N (157-560 aa.) and PvRBP1a-C (606-962 aa.), which contained head and tail structure region and sequence conserved region, respectively. Sensitivity against PvRBP1a-N (46.7%) was higher than PvRBP1a-C (17.8%). PvRBP1a-N was reported as a reticulocyte binding domain and this study identified a linear epitope with moderate antigenicity, thus an attractive domain for merozoite invasion-blocking vaccine development. However, our study highlights that a global PvRBP1a-based vaccine design needs to overcome several difficulties due to three distinct genotypes and low antigenicity levels.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Animals , Antigens, Protozoan , Genetic Variation , Humans , Merozoites , Polymorphism, Genetic , Protozoan Proteins/metabolism , Reticulocytes
16.
Biomedicines ; 10(3)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35327472

ABSTRACT

SQ109 is an anti-tubercular drug candidate that has completed Phase IIb/III clinical trials for tuberculosis and has also been shown to exhibit potent in vitro efficacy against protozoan parasites including Leishmania and Trypanosoma cruzi spp. However, its in vivo efficacy against protozoa has not been reported. Here, we evaluated the activity of SQ109 in mouse models of Leishmania, Trypanosoma spp. as well as Toxoplasma infection. In the T. cruzi mouse model, 80% of SQ109-treated mice survived at 40 days post-infection. Even though SQ109 did not cure all mice, these results are of interest since they provide a basis for future testing of combination therapies with the azole posaconazole, which acts synergistically with SQ109 in vitro. We also found that SQ109 inhibited the growth of Toxoplasma gondii in vitro with an IC50 of 1.82 µM and there was an 80% survival in mice treated with SQ109, whereas all untreated animals died 10 days post-infection. Results with Trypanosoma brucei and Leishmania donovani infected mice were not promising with only moderate efficacy. Since SQ109 is known to be extensively metabolized in animals, we investigated the activity in vitro of SQ109 metabolites. Among 16 metabolites, six mono-oxygenated forms were found active across the tested protozoan parasites, and there was a ~6× average decrease in activity of the metabolites as compared to SQ109 which is smaller than the ~25× found with mycobacteria.

17.
J Enzyme Inhib Med Chem ; 37(1): 912-929, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35306933

ABSTRACT

Trypanothione synthetase (TryS) catalyses the synthesis of N1,N8-bis(glutathionyl)spermidine (trypanothione), which is the main low molecular mass thiol supporting several redox functions in trypanosomatids. TryS attracts attention as molecular target for drug development against pathogens causing severe and fatal diseases in mammals. A drug discovery campaign aimed to identify and characterise new inhibitors of TryS with promising biological activity was conducted. A large compound library (n = 51,624), most of them bearing drug-like properties, was primarily screened against TryS from Trypanosoma brucei (TbTryS). With a true-hit rate of 0.056%, several of the TbTryS hits (IC50 from 1.2 to 36 µM) also targeted the homologue enzyme from Leishmania infantum and Trypanosoma cruzi (IC50 values from 2.6 to 40 µM). Calmidazolium chloride and Ebselen stand out for their multi-species anti-TryS activity at low µM concentrations (IC50 from 2.6 to 13.8 µM). The moieties carboxy piperidine amide and amide methyl thiazole phenyl were identified as novel TbTryS inhibitor scaffolds. Several of the TryS hits presented one-digit µM EC50 against T. cruzi and L. donovani amastigotes but proved cytotoxic against the human osteosarcoma and macrophage host cells (selectivity index ≤ 3). In contrast, seven hits showed a significantly higher selectivity against T. b. brucei (selectivity index from 11 to 182). Non-invasive redox assays confirmed that Ebselen, a multi-TryS inhibitor, induces an intracellular oxidative milieu in bloodstream T. b. brucei. Kinetic and mass spectrometry analysis revealed that Ebselen is a slow-binding inhibitor that modifies irreversible a highly conserved cysteine residue from the TryS's synthetase domain. The most potent TbTryS inhibitor (a singleton containing an adamantine moiety) exerted a non-covalent, non-competitive (with any of the substrates) inhibition of the enzyme. These data feed the drug discovery pipeline for trypanosomatids with novel and valuable information on chemical entities with drug potential.


Subject(s)
Amide Synthases/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Leishmania infantum/drug effects , Trypanosoma cruzi/drug effects , Amide Synthases/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leishmania infantum/enzymology , Macrophages/drug effects , Molecular Structure , Structure-Activity Relationship , Trypanosoma cruzi/enzymology
18.
J Enzyme Inhib Med Chem ; 36(1): 1922-1930, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34425714

ABSTRACT

A rational-based process was adopted for repurposing pyrrolidine-based 3-deoxysphingosylphosphorylcholine analogs bearing variable acyl chains, different stereochemical configuration and/or positional relationships. Structural features were highly influential on activity. Amongst, enantiomer 1e having 1,2-vicinal relationship for the -CH2O- and the N-acyl moieties, a saturated palmitoyl chain and an opposite stereochemical configuration to natural sphingolipids was the most potent hit compound against promastigotes showing IC50 value of 28.32 µM. The corresponding enantiomer 1a was 2-fold less potent showing a eudismic ratio of 0.54 in promastigotes. Compounds 1a and 1e inhibited the growth of amastigotes more potently relative to promastigotes. Amongst, enantiomer 1a as the more selective and safer. In silico docking study using a homology model of Leishmania donovani inositol phosphoceramide synthase (IPCS) provided plausible reasoning for the molecular factors underlying the found activity. Collectively, this study suggests compounds 1a and 1e as potential hit compounds for further development of new antileishmanial agents.


Subject(s)
Antiprotozoal Agents/chemistry , Leishmania donovani/drug effects , Phosphorylcholine/chemistry , Pyrrolidines/chemistry , Amide Synthases/metabolism , Antiprotozoal Agents/pharmacology , Drug Evaluation, Preclinical , Humans , Molecular Conformation , Molecular Docking Simulation , Palmitates/chemistry , Pyrrolidines/pharmacology , Sphingomyelins/chemistry , Structure-Activity Relationship
19.
Biochem Biophys Res Commun ; 569: 193-198, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34256188

ABSTRACT

Visceral leishmaniasis (VL) is a fatal infectious disease caused by viscerotropic parasitic species of Leishmania. Current treatment options are often ineffective and toxic, and more importantly, there are no clinically validated drug targets available to develop next generation therapeutics against VL. Topoisomerase IB (TopIB) is an essential enzyme for Leishmania survival. The enzyme is organized as a bi-subunit that is distinct from the monomeric topoisomerase I of human. Based on this unique feature, we synthesized peptides composed of partial amino acid sequences of small subunit of Leishmania donovani (Ld) TopIB to confirm a decrease in catalytic activity by interfering the interaction between the two subunits. One of the synthetic peptides, covering essential amino acids for catalytic activity of LdTopIB, interrupted the enzymatic activity. Next, we examined 151 compounds selected from virtual screening in a functional assay and identified three LRL-TP compounds with a significant decrease in LdTopIB activity (IC50 of LRL-TP-85: 1.3 µM; LRL-TP-94: 2.9 µM; and LRL-TP-101: 35.3 µM) and no effects on Homo sapiens (Hs) TopIB activity. Based on molecular docking, the protonated tertiary amine of inhibitors formed key interactions with S415 of the large subunit. The EC50 values of LRL-TP-85, LRL-TP-94, and LRL-TP-101 were respectively 4.9, 1.4, and 27.8 µM in extracellular promastigote assay and 34.0, 53.7, and 11.4 µM in intracellular amastigote assay. Overall, we validated the protein-protein interaction site of LdTopIB as a potential drug target and identified small molecule inhibitors with anti-leishmanial activity.


Subject(s)
DNA Topoisomerases, Type I/metabolism , Leishmania donovani/enzymology , Protein Interaction Maps/drug effects , Protozoan Proteins/metabolism , Topoisomerase I Inhibitors/pharmacology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Cells, Cultured , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/genetics , Humans , Leishmania donovani/drug effects , Leishmania donovani/genetics , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/prevention & control , Mice , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Binding/drug effects , Protein Domains , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , THP-1 Cells , Topoisomerase I Inhibitors/chemistry
20.
Pathogens ; 9(5)2020 May 20.
Article in English | MEDLINE | ID: mdl-32443883

ABSTRACT

Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.

SELECTION OF CITATIONS
SEARCH DETAIL
...