Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anesth Analg ; 137(5): 996-1006, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37678264

ABSTRACT

BACKGROUND: Renal ischemia and reperfusion (IR) contribute to perioperative acute kidney injury, and oxygen is a key regulator of this process. We hypothesized that oxygen administration during surgery and renal IR would impact postoperative kidney function and injury in mice. METHODS: Mice were anesthetized, intubated, and mechanically ventilated with a fraction of inspired oxygen (F io2 ) 0.10 (hypoxia), 0.21 (normoxia), 0.60 (moderate hyperoxia), or 1.00 (severe hyperoxia) during 67 minutes of renal IR or sham IR surgery. Additional mice were treated before IR or sham IR surgery with 50 mg/kg tempol, a superoxide scavenger. At 24 hours, mice were sacrificed, and blood and kidney collected. We assessed and compared kidney function and injury across groups by measuring blood urea nitrogen (BUN, primary end point), renal histological injury, renal expression of neutrophil gelatinase-associated lipocalin (NGAL), and renal heme oxygenase 1 ( Ho-1 ), peroxisome proliferator-activated receptor gamma coactivator 1-α ( Pgc1-α ), and glutathione peroxidase 4 ( Gpx-4 ) transcripts, to explore potential mechanisms of any effect of oxygen. RESULTS: Hyperoxia and hypoxia during renal IR surgery decreased renal function and increased kidney injury compared to normoxia. Baseline median (interquartile range) BUN was 22.2 mg/dL (18.4-26.0), and 24 hours after IR surgery, BUN was 17.5 mg/dL (95% confidence interval [CI], 1.3-38.4; P = .034) higher in moderate hyperoxia-treated animals, 51.8 mg/dL (95% CI, 24.9-74.8; P < .001) higher in severe hyperoxia-treated animals, and 64.9 mg/dL (95% CI, 41.2-80.3; P < .001) higher in hypoxia-treated animals compared to animals treated with normoxia ( P < .001, overall effect of hyperoxia). Hyperoxia-induced injury, but not hypoxia-induced injury, was attenuated by pretreatment with tempol. Histological injury scores, renal NGAL staining, and renal transcription of Ho-1 and suppression of Pgc1- α followed the same pattern as BUN, in relation to the effects of oxygen treatment. CONCLUSIONS: In this controlled preclinical study of oxygen treatment during renal IR surgery, hyperoxia and hypoxia impaired renal function, increased renal injury, and impacted expression of genes that affect mitochondrial biogenesis and antioxidant response. These results might have implications for patients during surgery when high concentrations of oxygen are frequently administered, especially in cases involving renal IR.

2.
Shock ; 58(4): 280-286, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36018251

ABSTRACT

ABSTRACT: Introduction: Perioperative alterations in perfusion lead to ischemia and reperfusion injury, and supplemental oxygen is administered during surgery to limit hypoxic injury but can lead to hyperoxia. We hypothesized that hyperoxia impairs endothelium-dependent and endothelium-independent vasodilation but not the vasodilatory response to heme-independent soluble guanylyl cyclase activation. Methods: We measured the effect of oxygen on vascular reactivity in mouse aortas. Mice were ventilated with 21% (normoxia), 60% (moderate hyperoxia), or 100% (severe hyperoxia) oxygen during 30 minutes of renal ischemia and 30 minutes of reperfusion. After sacrifice, the thoracic aorta was isolated, and segments mounted on a wire myograph. We measured endothelium-dependent and endothelium-independent vasodilation with escalating concentrations of acetylcholine (ACh) and sodium nitroprusside (SNP), respectively, and we measured the response to heme-independent soluble guanylyl cyclase activation with cinaciguat. Vasodilator responses to each agonist were quantified as the maximal theoretical response ( Emax ) and the effective concentration to elicit 50% relaxation (EC 50 ) using a sigmoid model and nonlinear mixed-effects regression. Aortic superoxide was measured with dihydroethidium probe and high-performance liquid chromatography quantification of the specific superoxide product 2-hydroxyethidium. Results: Hyperoxia impaired endothelium-dependent (ACh) and endothelium-independent (SNP) vasodilation compared with normoxia and had no effect on cinaciguat-induced vasodilation. The median ACh Emax was 76.4% (95% confidence interval = 69.6 to 83.3) in the normoxia group, 53.5% (46.7 to 60.3) in the moderate hyperoxia group, and 53.1% (46.3 to 60.0) in the severe hyperoxia group ( P < 0.001, effect across groups), while the ACh EC 50 was not different among groups. The SNP Emax was 133.1% (122.9 to 143.3) in normoxia, 128.3% (118.1 to 138.6) in moderate hyperoxia, and 114.8% (104.6 to 125.0) in severe hyperoxia ( P < 0.001, effect across groups), and the SNP EC 50 was 0.38 log M greater in moderate hyperoxia than in normoxia (95% confidence interval = 0.18 to 0.58, P < 0.001). Cinaciguat Emax and EC 50 were not different among oxygen treatment groups (median range Emax = 78.0% to 79.4% and EC 50 = -18.0 to -18.2 log M across oxygen groups). Aorta 2-hydroxyethidium was 1419 pmol/mg of protein (25th-75th percentile = 1178-1513) in normoxia, 1993 (1831-2473) in moderate hyperoxia, and 2078 (1936-2922) in severe hyperoxia ( P = 0.008, effect across groups). Conclusions: Hyperoxia, compared with normoxia, impaired endothelium-dependent and endothelium-independent vasodilation but not the response to heme-independent soluble guanylyl cyclase activation, and hyperoxia increased vascular superoxide production. Results from this study could have important implications for patients receiving high concentrations of oxygen and at risk for ischemia reperfusion-mediated organ injury.


Subject(s)
Acetylcholine , Hyperoxia , Mice , Animals , Soluble Guanylyl Cyclase/pharmacology , Nitroprusside/pharmacology , Acetylcholine/pharmacology , Superoxides/metabolism , Endothelium, Vascular/metabolism , Vasodilation , Vasodilator Agents/pharmacology , Heme , Oxygen/pharmacology , Nitric Oxide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...