Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Exp Bot ; 64(1): 317-32, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23213135

ABSTRACT

Verticillium wilt is a major threat to alfalfa (Medicago sativa) and many other crops. The model legume Medicago truncatula was used as a host for studying resistance and susceptibility to Verticillium albo-atrum. In addition to presenting well-established genetic resources, this wild plant species enables to investigate biodiversity of the response to the pathogen and putative crosstalk between disease and symbiosis. Symptom scoring after root inoculation and modelling of disease curves allowed assessing susceptibility levels in recombinant lines of three crosses between susceptible and resistant lines, in a core collection of 32 lines, and in mutants affected in symbiosis with rhizobia. A GFP-expressing V. albo-atrum strain was used to study colonization of susceptible plants. Symptoms and colonization pattern in infected M. truncatula plants were typical of Verticillium wilt. Three distinct major quantitative trait loci were identified using a multicross, multisite design, suggesting that simple genetic mechanisms appear to control Verticillium wilt resistance in M. truncatula lines A17 and DZA45.5. The disease functional parameters varied largely in lines of the core collection. This biodiversity with regard to disease response encourages the development of association genetics and ecological approaches. Several mutants of the resistant line, impaired in different steps of rhizobial symbiosis, were affected in their response to V. albo-atrum, which suggests that mechanisms involved in the establishment of symbiosis or disease might have some common regulatory control points.


Subject(s)
Disease Resistance/genetics , Genetic Variation , Medicago truncatula/genetics , Medicago truncatula/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Verticillium/physiology , Biodiversity , Chromosomes, Plant/genetics , Colony Count, Microbial , Disease Resistance/immunology , Host-Pathogen Interactions/genetics , Inbreeding , Medicago truncatula/immunology , Models, Biological , Plant Diseases/genetics , Plant Root Nodulation/genetics , Plant Roots/microbiology , Quantitative Trait Loci/genetics , Verticillium/growth & development , Xylem/microbiology
3.
Apoptosis ; 17(6): 566-78, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22402981

ABSTRACT

In human intestinal epithelial crypt (HIEC) cells, the PI3-K/Akt-1 pathway is crucial for the promotion of cell survival and suppression of anoikis. Class I PI3-K consists of a complex formed by a catalytic (C) and regulatory (R) subunit. Three R (p85α, ß, and p55γ) and four C (p110α, ß, γ and δ) isoforms are known. Herein, we analyzed the expression of PI3-K isoforms in HIEC cells and determined their roles in cell survival, as well as in the ß1 integrin/Fak/Src-mediated suppression of anoikis. We report that: (1) the predominant PI3-K complexes expressed by HIEC cells are p110α/p85ß and p110α/p55γ; (2) the inhibition and/or siRNA-mediated expression silencing of p110α, but not that of p110ß, γ or δ, results in Akt-1 down-activation and consequent apoptosis; (3) the expression silencing of p85ß or p55γ, but not that of p85α, likewise induces Akt-1 down-activation and apoptosis; however, the impact of a loss of p55γ on both Akt-1 activation and cell survival is significantly greater than that from the loss of p85ß; and (4) both the p110α/p85ß and p110α/p55γ complexes are engaged by ß1 integrin/Fak/Src signaling; however, the engagement of p110α/p85ß is primarily Src-dependent, whereas that of p110α/p55γ is primarily Fak-dependent (but Src-independent). Hence, HIEC cells selectively express PI3-K isoform complexes, translating into distinct roles in Akt-1 activation and cell survival, as well as in a selective engagement by Fak and/or Src within the context of ß1 integrin/Fak/Src-mediated suppression of anoikis.


Subject(s)
Anoikis , Epithelial Cells/cytology , Focal Adhesion Kinase 1/metabolism , Integrin beta1/metabolism , Intestines/cytology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins pp60(c-src)/metabolism , Signal Transduction , Cell Survival , Epithelial Cells/enzymology , Epithelial Cells/metabolism , Focal Adhesion Kinase 1/genetics , Humans , Integrin beta1/genetics , Intestinal Mucosa/metabolism , Intestines/enzymology , Isoenzymes/genetics , Isoenzymes/metabolism , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins pp60(c-src)/genetics
4.
J Cell Biochem ; 107(4): 639-54, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19479902

ABSTRACT

Herein, we investigated the survival roles of Fak, Src, MEK/Erk, and PI3-K/Akt-1 in intestinal epithelial cancer cells (HCT116, HT29, and T84), in comparison to undifferentiated and differentiated intestinal epithelial cells (IECs). We report that: (1) cancer cells display striking anoikis resistance, as opposed to undifferentiated/differentiated IECs; (2) under anoikis conditions and consequent Fak down-activation, cancer cells nevertheless exhibit sustained Fak-Src interactions and Src/MEK/Erk activation, unlike undifferentiated/differentiated IECs; however, HCT116 and HT29 cells exhibit a PI3-K/Akt-1 down-activation, as undifferentiated/differentiated IECs, whereas T84 cells do not; (3) cancer cells require MEK/Erk for survival, as differentiated (but not undifferentiated) IECs; however, T84 cells do not require Fak and HCT116 cells do not require PI3-K/Akt-1, in contrast to the other cells studied; (4) Src acts as a cornerstone in Fak-mediated signaling to MEK/Erk and PI3-K/Akt-1 in T84 cells, as in undifferentiated IECs, whereas PI3-K/Akt-1 is Src-independent in HCT116, HT29 cells, as in differentiated IECs; and (5) EGFR activity inhibition abrogates anoikis resistance in cancer cells through a loss of Fak-Src interactions and down-activation of Src/MEK/Erk (T84, HCT116, HT29 cells) and PI3-K/Akt-1 (T84 cells). Hence, despite distinctions in signaling behavior not necessarily related to undifferentiated or differentiated IECs, intestinal epithelial cancer cells commonly display an EGFR-mediated sustained activation of Src under anoikis conditions. Furthermore, such sustained Src activation confers anoikis resistance at least in part through a consequent sustenance of Fak-Src interactions and MEK/Erk activation, thus not only overriding Fak-mediated signaling to MEK/Erk and/or PI3-K/Akt-1, but also the requirement of Fak and/or PI3-K/Akt-1 for survival.


Subject(s)
Anoikis , ErbB Receptors , Focal Adhesion Kinase 1/metabolism , Intestinal Neoplasms/pathology , Signal Transduction , src-Family Kinases/metabolism , Cell Differentiation , Cell Line , Cell Line, Tumor , Epithelial Cells/cytology , Epithelial Cells/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Intestinal Mucosa/cytology , Intestinal Neoplasms/enzymology , Intestinal Neoplasms/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
5.
Apoptosis ; 13(4): 531-42, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18322799

ABSTRACT

The molecular determinants which dictate survival and apoptosis/anoikis in human intestinal crypt cells remain to be fully understood. To this effect, the roles of beta1 integrin/Fak/Src signaling to the PI3-K/Akt-1, MEK/Erk, and p38 pathways, were investigated. The regulation of six Bcl-2 homologs (Bcl-2, Mcl-1, Bcl-X(L), Bax, Bak, Bad) was likewise analyzed. We report that: (1) Anoikis causes a down-activation of Fak, Src, Akt-1 and Erk1/2, a loss of Fak-Src association, and a sustained/enhanced activation of p38beta, which is required as apoptosis/anoikis driver; (2) PI3-K/Akt-1 up-regulates the expression of Bcl-X(L) and Mcl-1, down-regulates Bax and Bak, drives Bad phosphorylation (both serine112/136 residues) and antagonizes p38beta activation; (3) MEK/Erk up-regulates Bcl-2, drives Bad phosphorylation (serine112 residue), but does not antagonize p38bactivation; (4) PI3-K/Akt-1 is required for survival, whereas MEK/Erk is not; (5) Src acts as a cornerstone in the engagement of both pathways by beta1 integrins/Fak, and is crucial for survival; and (6) beta1 integrins/Fak and/or Src regulate Bcl-2 homologs as both PI3-K/Atk-1 and MEK/Erk combined. Hence, beta1 integrin/Fak/Src signaling translates into integrated mediating functions of p38beta activation and regulation of Bcl-2 homologs by PI3-K/Akt-1 and MEK/Erk, consequently determining their requirement (or not) for survival.


Subject(s)
Anoikis/physiology , Cell Survival/physiology , Focal Adhesion Kinase 1/physiology , Integrin beta1/physiology , Intestinal Mucosa/physiology , Oncogene Protein pp60(v-src)/physiology , Signal Transduction/physiology , Cells, Cultured , Down-Regulation , Humans , Intestinal Mucosa/cytology , MAP Kinase Kinase Kinases/physiology , Mitogen-Activated Protein Kinase 1/physiology , Mitogen-Activated Protein Kinase 11/physiology , Mitogen-Activated Protein Kinase 3/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...