Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Brain Pathol ; : e13288, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982662

ABSTRACT

Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

3.
Neurol Sci ; 45(2): 749-767, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38087143

ABSTRACT

Sleep abnormalities may represent an independent risk factor for neurodegeneration. An international expert group convened in 2021 to discuss the state-of-the-science in this domain. The present article summarizes the presentations and discussions concerning the importance of a strategy for studying sleep- and circadian-related interventions for early detection and prevention of neurodegenerative diseases. An international expert group considered the current state of knowledge based on the most relevant publications in the previous 5 years; discussed the current challenges in the field of relationships among sleep, sleep disorders, and neurodegeneration; and identified future priorities. Sleep efficiency and slow wave activity during non-rapid eye movement (NREM) sleep are decreased in cognitively normal middle-aged and older adults with Alzheimer's disease (AD) pathology. Sleep deprivation increases amyloid-ß (Aß) concentrations in the interstitial fluid of experimental animal models and in cerebrospinal fluid in humans, while increased sleep decreases Aß. Obstructive sleep apnea (OSA) is a risk factor for dementia. Studies indicate that positive airway pressure (PAP) treatment should be started in patients with mild cognitive impairment or AD and comorbid OSA. Identification of other measures of nocturnal hypoxia and sleep fragmentation could better clarify the role of OSA as a risk factor for neurodegeneration. Concerning REM sleep behavior disorder (RBD), it will be crucial to identify the subset of RBD patients who will convert to a specific neurodegenerative disorder. Circadian sleep-wake rhythm disorders (CSWRD) are strong predictors of caregiver stress and institutionalization, but the absence of recommendations or consensus statements must be considered. Future priorities include to develop and validate existing and novel comprehensive assessments of CSWRD in patients with/at risk for dementia. Strategies for studying sleep-circadian-related interventions for early detection/prevention of neurodegenerative diseases are required. CSWRD evaluation may help to identify additional biomarkers for phenotyping and personalizing treatment of neurodegeneration.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , REM Sleep Behavior Disorder , Sleep Apnea, Obstructive , Middle Aged , Animals , Humans , Aged , Sleep , Amyloid beta-Peptides/cerebrospinal fluid
4.
bioRxiv ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37425954

ABSTRACT

Background: Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. Methods: Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. Results: THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. Conclusion: We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

5.
Neurodegener Dis ; 22(2): 55-67, 2022.
Article in English | MEDLINE | ID: mdl-36302349

ABSTRACT

INTRODUCTION: Sleep insufficiency or decreased quality have been associated with Alzheimer's disease (AD) already in its preclinical stages. Whether such traits are also present in rodent models of the disease has been poorly addressed, somewhat disabling the preclinical exploration of sleep-based therapeutic interventions for AD. METHODS: We investigated age-dependent sleep-wake phenotype of a widely used mouse model of AD, the Tg2576 line. We implanted electroencephalography/electromyography headpieces into 6-month-old (plaque-free, n = 10) and 11-month-old (moderate plaque-burdened, n = 10) Tg2576 mice and age-matched wild-type (WT, 6 months old n = 10, 11 months old n = 10) mice and recorded vigilance states for 24 h. RESULTS: Tg2576 mice exhibited significantly increased wakefulness and decreased non-rapid eye movement sleep over a 24-h period compared to WT mice at 6 but not at 11 months of age. Concomitantly, power in the delta frequency was decreased in 6-month old Tg2576 mice in comparison to age-matched WT controls, rendering a reduced slow-wave energy phenotype in the young mutants. Lack of genotype-related differences over 24 h in the overall sleep-wake phenotype at 11 months of age appears to be the result of changes in sleep-wake characteristics accompanying the healthy aging of WT mice. CONCLUSION: Therefore, our results indicate that at the plaque-free disease stage, diminished sleep quality is present in Tg2576 mice which resembles aged healthy controls, suggesting an early-onset of sleep-wake deterioration in murine AD. Whether such disturbances in the natural patterns of sleep could in turn worsen disease progression warrants further exploration.


Subject(s)
Alzheimer Disease , Sleep, Slow-Wave , Mice , Animals , Alzheimer Disease/complications , Alzheimer Disease/genetics , Mice, Transgenic , Sleep/genetics , Electroencephalography , Disease Models, Animal , Plaque, Amyloid
6.
J Sleep Res ; 31(6): e13615, 2022 12.
Article in English | MEDLINE | ID: mdl-35474362

ABSTRACT

Modulation of slow-wave activity, either via pharmacological sleep induction by administering sodium oxybate or sleep restriction followed by a strong dissipation of sleep pressure, has been associated with preserved posttraumatic cognition and reduced diffuse axonal injury in traumatic brain injury rats. Although these classical strategies provided promising preclinical results, they lacked the specificity and/or translatability needed to move forward into clinical applications. Therefore, we recently developed and implemented a rodent auditory stimulation method that is a scalable, less invasive and clinically meaningful approach to modulate slow-wave activity by targeting a particular phase of slow waves. Here, we assessed the feasibility of down-phase targeted auditory stimulation of slow waves and evaluated its comparative modulatory strength in relation to the previously employed slow-wave activity modulators in our rat model of traumatic brain injury. Our results indicate that, in spite of effectively reducing slow-wave activity in both healthy and traumatic brain injury rats via down-phase targeted stimulation, this method was not sufficiently strong to counteract the boost in slow-wave activity associated with classical modulators, nor to alter concomitant posttraumatic outcomes. Therefore, the usefulness and effectiveness of auditory stimulation as potential standalone therapeutic strategy in the context of traumatic brain injury warrants further exploration.


Subject(s)
Brain Injuries, Traumatic , Sleep , Animals , Rats , Acoustic Stimulation/methods , Cognition , Brain Injuries, Traumatic/complications , Electroencephalography/methods
7.
Eur J Nucl Med Mol Imaging ; 49(7): 2137-2152, 2022 06.
Article in English | MEDLINE | ID: mdl-35128565

ABSTRACT

PURPOSE: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired. METHODS: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 µm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.v.). In vitro probe characterization, concurrent vMSOT and epi-fluorescence imaging of in vivo PBB5 targeting (i.v.) was performed in P301L and wild-type mice, followed by ex vivo validation using AT-8 antibody for phosphorylated tau. RESULTS: PBB5 showed specific binding to recombinant K18 tau fibrils by fluorescence assay, to post-mortem Alzheimer's disease brain tissue homogenate by competitive binding against [11C]PBB3 and to tau deposits (AT-8 positive) in post-mortem corticobasal degeneration and progressive supranuclear palsy brains. Dose-dependent optoacoustic and fluorescence signal intensities were observed in the mouse brains following i.v. administration of different concentrations of PBB5. In vivo vMSOT brain imaging of P301L mice showed higher retention of PBB5 in the tau-laden cortex and hippocampus compared to wild-type mice, as confirmed by ex vivo vMSOT, epi-fluorescence, multiphoton microscopy, and immunofluorescence staining. CONCLUSIONS: We demonstrated non-invasive whole-brain imaging of tau in P301L mice with vMSOT system using PBB5 at a previously unachieved ~ 115 µm spatial resolution. This platform provides a new tool to study tau spreading and clearance in a tauopathy mouse model, foreseeable in monitoring tau targeting putative therapeutics.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Animals , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Positron-Emission Tomography/methods , Tauopathies/metabolism , tau Proteins/metabolism
8.
Sci Transl Med ; 13(623): eabe7099, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34878820

ABSTRACT

Slow-wave sleep (SWS) modulation in rodent models of Alzheimer's disease alters extracellular amyloid burden. In Parkinson's disease (PD), SWS appears to be closely linked with disease symptoms and progression. PD is characterized by damaging intracellular α-synuclein (αSyn) deposition that propagates extracellularly, contributing to disease spread. Intracellular αSyn is sensitive to degradation, whereas extracellular αSyn may be eliminated by glymphatic clearance, a process increased during SWS. Here, we explored whether long-term slow-wave modulation in murine models of PD presenting αSyn aggregation alters pathological protein burden and, thus, might constitute a valuable therapeutic target. Sleep-modulating treatments showed that enhancing slow waves in both VMAT2-deficient and A53T mouse models of PD reduced pathological αSyn accumulation compared to control animals. Nonpharmacological sleep deprivation had the opposite effect in VMAT2-deficient mice, severely increasing the pathological burden. We also found that SWS enhancement was associated with increased recruitment of aquaporin-4 to perivascular sites, suggesting a possible increase of glymphatic function. Furthermore, mass spectrometry data revealed differential and specific up-regulation of functional protein clusters linked to proteostasis upon slow wave­enhancing interventions. Overall, the beneficial effect of SWS enhancement on neuropathological outcome in murine synucleinopathy models mirrors findings in models of Alzheimer. Modulating SWS might constitute an effective strategy for modulating PD pathology in patients.


Subject(s)
Alzheimer Disease , Parkinson Disease , Sleep, Slow-Wave , Synucleinopathies , Animals , Disease Models, Animal , Humans , Mice , Parkinson Disease/metabolism , alpha-Synuclein/metabolism
9.
Elife ; 102021 10 06.
Article in English | MEDLINE | ID: mdl-34612204

ABSTRACT

Slow waves and cognitive output have been modulated in humans by phase-targeted auditory stimulation. However, to advance its technical development and further our understanding, implementation of the method in animal models is indispensable. Here, we report the successful employment of slow waves' phase-targeted closed-loop auditory stimulation (CLAS) in rats. To validate this new tool both conceptually and functionally, we tested the effects of up- and down-phase CLAS on proportions and spectral characteristics of sleep, and on learning performance in the single-pellet reaching task, respectively. Without affecting 24 hr sleep-wake behavior, CLAS specifically altered delta (slow waves) and sigma (sleep spindles) power persistently over chronic periods of stimulation. While up-phase CLAS does not elicit a significant change in behavioral performance, down-phase CLAS exerted a detrimental effect on overall engagement and success rate in the behavioral test. Overall CLAS-dependent spectral changes were positively correlated with learning performance. Altogether, our results provide proof-of-principle evidence that phase-targeted CLAS of slow waves in rodents is efficient, safe, and stable over chronic experimental periods, enabling the use of this high-specificity tool for basic and preclinical translational sleep research.


Subject(s)
Acoustic Stimulation/methods , Conditioning, Operant/physiology , Sleep, Slow-Wave/physiology , Animals , Electroencephalography , Electromyography , Learning/physiology , Male , Rats, Sprague-Dawley , Sleep/physiology
10.
Transl Neurosci ; 12(1): 611-625, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-35070444

ABSTRACT

Deep brain stimulation (DBS) has been scarcely investigated in the field of sleep research. We hypothesize that DBS onto hypothalamic sleep- and wake-promoting centers will produce significant neuromodulatory effects and potentially become a therapeutic strategy for patients suffering severe, drug-refractory sleep-wake disturbances. We aimed to investigate whether continuous electrical high-frequency DBS, such as that often implemented in clinical practice, in the ventrolateral preoptic nucleus (VLPO) or the perifornical area of the posterior lateral hypothalamus (PeFLH), significantly modulates sleep-wake characteristics and behavior. We implanted healthy rats with electroencephalographic/electromyographic electrodes and recorded vigilance states in parallel to bilateral bipolar stimulation of VLPO and PeFLH at 125 Hz and 90 µA over 24 h to test the modulating effects of DBS on sleep-wake proportions, stability and spectral power in relation to the baseline. We unexpectedly found that VLPO DBS at 125 Hz deepens slow-wave sleep (SWS) as measured by increased delta power, while sleep proportions and fragmentation remain unaffected. Thus, the intensity, but not the amount of sleep or its stability, is modulated. Similarly, the proportion and stability of vigilance states remained altogether unaltered upon PeFLH DBS but, in contrast to VLPO, 125 Hz stimulation unexpectedly weakened SWS, as evidenced by reduced delta power. This study provides novel insights into non-acute functional outputs of major sleep-wake centers in the rat brain in response to electrical high-frequency stimulation, a paradigm frequently used in human DBS. In the conditions assayed, while exerting no major effects on the sleep-wake architecture, hypothalamic high-frequency stimulation arises as a provocative sleep intensity-modulating approach.

11.
Neuropharmacology ; 181: 108353, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33038358

ABSTRACT

Parkinson disease is typically treated with L-3,4-dihydroxyphenylalanine (or levodopa) co-prescribed with concentration stabilizers to prevent undesired motor fluctuations. However, the beneficial role of the chronic combined therapy on disease progression has not been thoroughly explored. We hypothesized that tolcapone, a catechol-O-methyl-transferase inhibitor, co-administered with levodopa may offer beneficial long-term disease-modifying effects through its dopamine stabilization actions. Here, we followed vesicular monoamine transporter 2-deficient and wild-type mice treated twice daily per os with vehicle, levodopa (20 mg/kg), tolcapone (15 mg/kg) or levodopa (12.5 mg/kg) + tolcapone (15 mg/kg) for 17 weeks. We assessed open field, bar test and rotarod performances at baseline and every 4th week thereafter, corresponding to OFF-medication weeks. Finally, we collected coronal sections from the frontal caudate-putamen and determined the reactivity level of dopamine transporter. Vesicular monoamine transporter 2-deficient mice responded positively to chronic levodopa + tolcapone intervention in the bar test during OFF-periods. Neither levodopa nor tolcapone interventions offered significant improvements on their own. Similarly, chronic levodopa + tolcapone intervention was associated with partially rescued dopamine transporter levels, whereas animals treated solely with levodopa or tolcapone did not present this effect. Interestingly, 4-month progression of bar test scores correlated significantly with dopamine-transporter-label density. Overall, we observed a moderate functional and histopathological improvement effect by chronic dopamine replacement when combined with tolcapone in vesicular monoamine transporter 2-deficient mice. Altogether, chronic stabilization of dopamine levels by catechol-O-methyl-transferase inhibition, besides its intended immediate actions, arises as a potential long-term beneficial approach during the progression of Parkinson disease.


Subject(s)
Antiparkinson Agents/therapeutic use , Catechol O-Methyltransferase Inhibitors/pharmacology , Levodopa/therapeutic use , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Tolcapone/therapeutic use , Vesicular Monoamine Transport Proteins/deficiency , Vesicular Monoamine Transport Proteins/genetics , Animals , Behavior, Animal/drug effects , Dopamine Plasma Membrane Transport Proteins/metabolism , Eating/drug effects , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Parkinson Disease/psychology , Psychomotor Performance/drug effects
12.
PLoS Comput Biol ; 15(4): e1006968, 2019 04.
Article in English | MEDLINE | ID: mdl-30998681

ABSTRACT

Understanding sleep and its perturbation by environment, mutation, or medication remains a central problem in biomedical research. Its examination in animal models rests on brain state analysis via classification of electroencephalographic (EEG) signatures. Traditionally, these states are classified by trained human experts by visual inspection of raw EEG recordings, which is a laborious task prone to inter-individual variability. Recently, machine learning approaches have been developed to automate this process, but their generalization capabilities are often insufficient, especially across animals from different experimental studies. To address this challenge, we crafted a convolutional neural network-based architecture to produce domain invariant predictions, and furthermore integrated a hidden Markov model to constrain state dynamics based upon known sleep physiology. Our method, which we named SPINDLE (Sleep Phase Identification with Neural networks for Domain-invariant LEearning) was validated using data of four animal cohorts from three independent sleep labs, and achieved average agreement rates of 99%, 98%, 93%, and 97% with scorings from five human experts from different labs, essentially duplicating human capability. It generalized across different genetic mutants, surgery procedures, recording setups and even different species, far exceeding state-of-the-art solutions that we tested in parallel on this task. Moreover, we show that these scored data can be processed for downstream analyzes identical to those from human-scored data, in particular by demonstrating the ability to detect mutation-induced sleep alteration. We provide to the scientific community free usage of SPINDLE and benchmarking datasets as an online server at https://sleeplearning.ethz.ch. Our aim is to catalyze high-throughput and well-standardized experimental studies in order to improve our understanding of sleep.


Subject(s)
Electroencephalography , Electromyography , Neural Networks, Computer , Signal Processing, Computer-Assisted , Sleep/physiology , Animals , Computational Biology , Humans , Machine Learning , Mice , Models, Animal , Rats , Wakefulness/physiology
13.
Ann Neurol ; 85(5): 765-770, 2019 05.
Article in English | MEDLINE | ID: mdl-30887557

ABSTRACT

Growing evidence from Alzheimer disease supports a potentially beneficial role of slow-wave sleep in neurodegeneration. However, the importance of slow-wave sleep in Parkinson disease is unknown. In 129 patients with Parkinson disease, we retrospectively tested whether sleep slow waves, objectively quantified with polysomnography, relate to longitudinal changes in Unified Parkinson's Disease Rating Scale motor scores. We found that higher accumulated power of sleep slow waves was associated with slower motor progression, particularly of axial motor symptoms, over a mean time of 4.6 ± 2.3 years. This preliminary finding suggests that deeper sleep relates to slower motor progression in Parkinson disease. Ann Neurol 2019;85:765-770.


Subject(s)
Disease Progression , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology , Sleep, Slow-Wave/physiology , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , Motor Skills Disorders/diagnosis , Motor Skills Disorders/physiopathology , Polysomnography/trends , Retrospective Studies
14.
J Neurotrauma ; 35(1): 85-93, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28762870

ABSTRACT

Although sleep-wake disturbances are prevalent and well described after traumatic brain injury, their pathophysiology remains unclear, most likely because human traumatic brain injury is a highly heterogeneous entity that makes the systematic study of sleep-wake disturbances in relation to trauma-induced histological changes a challenging task. Despite increasing interest, specific and effective treatment strategies for post-traumatic sleep-wake disturbances are still missing. With the present work, therefore, we aimed at studying acute and chronic sleep-wake disturbances by electrophysiological means, and at assessing their histological correlates after closed diffuse traumatic brain injury in rats with the ultimate goal of generating a model of post-traumatic sleep-wake disturbances and associated histopathological findings that accurately represents the human condition. We assessed sleep-wake behavior by means of standard electrophysiological recordings before and 1, 7, and 28 days after sham or traumatic brain injury procedures. Sleep-wake findings were then correlated to immunohistochemically labeled and stereologically quantified neuronal arousal systems. Compared with control animals, we found that closed diffuse traumatic brain injury caused increased sleep need one month after trauma, and sleep was more consolidated. As histological correlate, we found a reduced number of histamine immunoreactive cells in the tuberomammillary nucleus, potentially related to increased neuroinflammation. Monoaminergic and hypocretinergic neurotransmitter systems in the hypothalamus and rostral brainstem were not affected, however. These results suggest that our rat traumatic brain injury model reflects human post-traumatic sleep-wake disturbances and associated histopathological findings very accurately, thus providing a study platform for novel treatment strategies for affected patients.


Subject(s)
Brain Injuries, Traumatic/complications , Brain/pathology , Disease Models, Animal , Neurons/pathology , Sleep Disorders, Circadian Rhythm/etiology , Animals , Brain/physiopathology , Brain Injuries, Traumatic/physiopathology , Histamine , Male , Rats , Rats, Sprague-Dawley , Sleep Disorders, Circadian Rhythm/physiopathology
15.
Front Hum Neurosci ; 10: 587, 2016.
Article in English | MEDLINE | ID: mdl-27917116

ABSTRACT

Apathy is considered to be a core feature of Parkinson's disease (PD) and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e., 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2). Apathetic-like behavior in VMAT2 deficient (LO) mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

16.
Sleep ; 39(6): 1249-52, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27091531

ABSTRACT

STUDY OBJECTIVES: Coma and chronic sleepiness are common after traumatic brain injury (TBI). Here, we explored whether injury to arousal-promoting brainstem neurons occurs in patients with fatal TBI. METHODS: Postmortem examination of 8 TBI patients and 10 controls. RESULTS: Compared to controls, TBI patients had 17% fewer serotonergic neurons in the dorsal raphe nucleus (effect size: 1.25), but the number of serotonergic neurons did not differ in the median raphe nucleus. TBI patients also had 29% fewer noradrenergic neurons in the locus coeruleus (effect size: 0.96). The number of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei (PPT/LDT) was similar in TBI patients and controls. CONCLUSIONS: TBI injures arousal-promoting neurons of the mesopontine tegmentum, but this injury is less severe than previously observed in hypothalamic arousal-promoting neurons. Most likely, posttraumatic arousal disturbances are not primarily caused by damage to these brainstem neurons, but arise from an aggregate of injuries, including damage to hypothalamic arousal nuclei and disruption of other arousal-related circuitries.


Subject(s)
Arousal , Brain Injuries, Traumatic/pathology , Brain Stem/pathology , Neurons/pathology , Adrenergic Neurons/pathology , Autopsy , Case-Control Studies , Cholinergic Neurons/cytology , Dorsal Raphe Nucleus/pathology , Humans , Hypothalamus/pathology , Locus Coeruleus/pathology , Neural Pathways , Neurons/cytology , Pons/cytology , Serotonergic Neurons/cytology , Serotonergic Neurons/pathology
17.
J Neurosci ; 36(12): 3422-9, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27013672

ABSTRACT

Traumatic brain injury (TBI) is a major cause of death and disability worldwide. It produces diffuse axonal injury (DAI), which contributes to cognitive impairment, but effective disease-modifying treatment strategies are missing. We have recently developed a rat model of closed skull TBI that reproduces human TBI consequences, including DAI and clinical sequelae such as memory impairment. Here, we investigated whether sleep modulation after trauma has an impact on DAI and memory outcome. We assessed cognition with the novel object recognition test and stained for amyloid precursor protein, a DAI marker. We found that both sleep induction and restriction acutely after TBI enhanced encephalographic slow-wave activity, markedly reduced diffuse axonal damage in the cortex and hippocampus, and improved memory impairment 2 weeks after trauma. These results suggest that enhancing slow-wave sleep acutely after trauma may have a beneficial disease-modifying effect in subjects with acute TBI. SIGNIFICANCE STATEMENT: Traumatic brain injury (TBI) is a clinically important entity. Cognitive deficits belong to the most prevalent chronic posttraumatic symptoms, most likely due to diffuse axonal injury (DAI). A growing body of evidence suggests a role of sleep in the clearance of waste products in the brain, possibly including amyloid precursor protein (APP), a marker of DAI. In this study, we provide evidence that enhancement of slow-wave oscillatory activity in the delta-frequency range decreases the APP-immunoreactivity and preserves cognitive abilities after trauma, potentially offering novel, noninvasive treatment options for traumatic injury.


Subject(s)
Brain Injuries/physiopathology , Brain Injuries/rehabilitation , Diffuse Axonal Injury/physiopathology , Diffuse Axonal Injury/rehabilitation , Memory Disorders/physiopathology , Memory Disorders/rehabilitation , Sleep Stages , Animals , Brain Injuries/complications , Cognitive Dysfunction/etiology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/rehabilitation , Delta Rhythm , Diffuse Axonal Injury/etiology , Male , Memory Disorders/etiology , Rats , Rats, Sprague-Dawley
18.
J Neurotrauma ; 33(13): 1171-80, 2016 07 01.
Article in English | MEDLINE | ID: mdl-26414556

ABSTRACT

Traumatic brain injury (TBI) is a major cause of persistent disabilities such as sleep-wake disorders (SWD). Rodent studies of SWD after TBI are scarce, however, because of lack of appropriate TBI models reproducing acceleration-deceleration forces and compatible with electroencephalography/myography (EEG/EMG)-based recordings of vigilance states. We therefore adapted the Marmarou impact acceleration model to allow for compatibility with EEG-headset implantation. After implantation of EEG/EMG electrodes, we induced closed TBI by a frontal, angular hit with a weight-drop device (56 rats, weight 2500 g, fall height 25 cm). Subsequently, we tested our model's usefulness for long-term studies on a behavioral, electrophysiological, and histological level. Neurological, motor, and memory deficits were assessed with the neurological severity score, open field, and novel object recognition tests, respectively. EEG/EMG recordings were performed in both Sham (n = 7) and TBI (n = 7) rats before and 1, 7, and 28 days after trauma to evaluate sleep-wake proportions and post-traumatic implant stability. Histological assessments included hematoxylin and eosin staining for parenchymal damage and hemorrhage and amyloid precursor protein staining for diffuse axonal damage. All rats survived TBI without major neurological or motor deficits. Memory function was impaired after TBI at weeks 1, 2, and 3 and recovered at week 4. EEG implants were stable for at least 1 month and enabled qualitative and quantitative sleep analyses. Histological assessments revealed no major bleedings or necrosis but intense diffuse axonal damage after TBI. This approach fulfills major pre-conditions for experimental TBI models and offers a possibility to electrophysiologically study behavioral states before and after trauma.


Subject(s)
Behavior, Animal/physiology , Brain Injuries, Traumatic/physiopathology , Diffuse Axonal Injury/physiopathology , Disease Models, Animal , Memory Disorders/physiopathology , Motor Activity/physiology , Recovery of Function/physiology , Severity of Illness Index , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Diffuse Axonal Injury/complications , Diffuse Axonal Injury/pathology , Electroencephalography , Electromyography , Male , Memory Disorders/etiology , Rats , Rats, Sprague-Dawley
19.
Brain ; 138(Pt 10): 2948-63, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26276013

ABSTRACT

Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum.


Subject(s)
Brain/metabolism , Catecholamines/metabolism , Movement Disorders/pathology , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Animals , Biopterins/metabolism , Brain/pathology , Disease Models, Animal , Dopamine Agents/therapeutic use , Eating/genetics , Female , Gene Expression Regulation/genetics , Gene Knock-In Techniques , Levodopa/therapeutic use , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Movement Disorders/drug therapy , Mutation/genetics , Thyroxine/metabolism
20.
Ann Clin Transl Neurol ; 1(10): 765-77, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25493268

ABSTRACT

OBJECTIVE: Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS: Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS: Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION: Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...