Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Insects ; 13(12)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36555054

ABSTRACT

This study investigated the genetic differences between Aedes aegypti subspecies (Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf)) from Sudan using the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene marker. Nineteen distinct haplotypes of the ND4 were identified in female Aedes aegypti mosquitoes from the study sites. The phylogenetic relationship of the 19 ND4 haplotypes was demonstrated in a median-joining haplotype network tree with Aaa and Aaf populations found to share three haplotypes. The genetic variance (Pairwise FST values) was estimated and found to range from 0.000 to 0.811. Isolation by distance test revealed that geographical distance was correlated to genetic variation (coefficient value (r) = 0.43). The Polar maximum likelihood tree showed the phylogenetic relationship of 91 female Aaa and Aaf from the study sites, with most of the Aaf haplotypes clustered in one group while most of the Aaa haplotypes gathered in another group, but there was an admixture of the subspecies in both clusters, especially the Aaa cluster. The Spatial Analysis of Molecular Variance (SAMOVA) test revealed that the eight populations clustered into two phylogeographic groups/clusters of the two subspecies populations. The 2 Aedes aegypti subspecies seemed not to be totally separated geographically with gene flow among the populations.

3.
Pathogens ; 10(1)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477339

ABSTRACT

Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth of information on the distribution and genetic diversity of these two forms in Sudan and other African Sahelian region countries. This study aimed to explore the distribution and genetic diversity of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was performed. Samples collected from eight locations were morphologically identified, subjected to DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized. The haplotype and nucleotide diversity of the collected samples were 0.377-0.947 and 0.002-0.01, respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups. Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus, the haplotype network consisted of three clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...