Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Affect Behav Neurosci ; 24(2): 269-278, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38168850

ABSTRACT

Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.


Subject(s)
Amphetamine , Central Nervous System Stimulants , Electroencephalography , Mice, Inbred C57BL , Motivation , Amphetamine/pharmacology , Humans , Animals , Male , Electroencephalography/drug effects , Adult , Young Adult , Double-Blind Method , Motivation/drug effects , Motivation/physiology , Female , Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/administration & dosage , Mice , Alpha Rhythm/drug effects , Alpha Rhythm/physiology
2.
Neurosci Lett ; 740: 135423, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33069811

ABSTRACT

Social isolation is a growing public health concern across the lifespan. Specifically, isolation early in life, during critical periods of brain development, increases the risk of psychiatric disorders later in life. Previous studies of isolation models in mice have shown distinct neurological abnormalities in various regions of the brain, but the mechanism linking the experience of isolation to these phenotypes is unclear. In this study, we show that ΔFosB, a long-lived transcription factor associated with neuronal activity, chronic stress, and drug-induced neuroplasticity, is upregulated in the prelimbic/infralimbic (PL/IL) region of the cortex and hippocampus of adult C57BL/6J mice transiently isolated for two weeks post-weaning. Additionally, a related transcription factor, FosB, is also increased in the PL/IL in socially isolated females.In contrast, both ΔFosB and FosB are increased in male mice isolated for six weeks from weaning until tissue collection. These results show that short-term isolation during the critical post-weaning period has long-lasting and sex-dependent effects on gene expression in brain and that FosB/ΔFosB expression provides a potential mechanistic link between post-weaning social isolation and associated neurological abnormalities.


Subject(s)
Cerebral Cortex/metabolism , Hippocampus/metabolism , Limbic System/metabolism , Proto-Oncogene Proteins c-fos/biosynthesis , Social Isolation/psychology , Weaning , Animals , Female , Gene Expression Regulation , Male , Mice , Mice, Inbred C57BL , Prefrontal Cortex/metabolism , Proto-Oncogene Proteins c-fos/genetics , Sex Characteristics
3.
Front Hum Neurosci ; 10: 414, 2016.
Article in English | MEDLINE | ID: mdl-27597821

ABSTRACT

Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers' brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers' brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.

4.
Br J Sports Med ; 49(15): 1007-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25633832

ABSTRACT

OBJECTIVES: Cumulative head trauma may alter brain structure and function. We explored the relationship between exposure variables, cognition and MRI brain structural measures in a cohort of professional combatants. METHODS: 224 fighters (131 mixed martial arts fighters and 93 boxers) participating in the Professional Fighters Brain Health Study, a longitudinal cohort study of licensed professional combatants, were recruited, as were 22 controls. Each participant underwent computerised cognitive testing and volumetric brain MRI. Fighting history including years of fighting and fights per year was obtained from self-report and published records. Statistical analyses of the baseline evaluations were applied cross-sectionally to determine the relationship between fight exposure variables and volumes of the hippocampus, amygdala, thalamus, caudate, putamen. Moreover, the relationship between exposure and brain volumes with cognitive function was assessed. RESULTS: Increasing exposure to repetitive head trauma measured by number of professional fights, years of fighting, or a Fight Exposure Score (FES) was associated with lower brain volumes, particularly the thalamus and caudate. In addition, speed of processing decreased with decreased thalamic volumes and with increasing fight exposure. Higher scores on a FES used to reflect exposure to repetitive head trauma were associated with greater likelihood of having cognitive impairment. CONCLUSIONS: Greater exposure to repetitive head trauma is associated with lower brain volumes and lower processing speed in active professional fighters.


Subject(s)
Boxing/injuries , Cognition Disorders/pathology , Craniocerebral Trauma/pathology , Martial Arts/injuries , Mental Processes/physiology , Thalamic Diseases/pathology , Thalamus/pathology , Adolescent , Adult , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Craniocerebral Trauma/physiopathology , Humans , Male , Organ Size , Thalamic Diseases/etiology , Thalamic Diseases/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...