Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Food Microbiol ; 121: 104513, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637075

ABSTRACT

Saccharomyces cerevisiae is a major actor in winemaking that converts sugars from the grape must into ethanol and CO2 with outstanding efficiency. Primary metabolites produced during fermentation have a great importance in wine. While ethanol content contributes to the overall profile, other metabolites like glycerol, succinate, acetate or lactate also have significant impacts, even when present in lower concentrations. S. cerevisiae is known for its great genetic diversity that is related to its natural or technological environment. However, the variation range of metabolic diversity which can be exploited to enhance wine quality depends on the pathway considered. Our experiment assessed the diversity of primary metabolites production in a set of 51 S. cerevisiae strains from various genetic backgrounds. Results pointed out great yield differences depending on the metabolite considered, with ethanol having the lowest variation. A negative correlation between ethanol and glycerol was observed, confirming glycerol synthesis as a suitable lever to reduce ethanol yield. Genetic groups were linked to specific yields, such as the wine group and high α-ketoglutarate and low acetate yields. This research highlights the potential of using natural yeast diversity in winemaking. It also provides a detailed data set on production of well known (ethanol, glycerol, acetate) or little-known (lactate) primary metabolites.


Subject(s)
Saccharomyces cerevisiae , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Wine/analysis , Fermentation , Glycerol/metabolism , Carbon/metabolism , Ethanol/metabolism , Acetates/metabolism , Lactates
2.
FEMS Yeast Res ; 242024 01 09.
Article in English | MEDLINE | ID: mdl-38124683

ABSTRACT

Saccharomyces cerevisiae requirement for reduced sulfur to synthesize methionine and cysteine during alcoholic fermentation, is mainly fulfilled through the sulfur assimilation pathway. Saccharomyces cerevisiae reduces sulfate into sulfur dioxide (SO2) and sulfide (H2S), whose overproduction is a major issue in winemaking, due to its negative impact on wine aroma. The amount of H2S produced is highly strain-specific and also depends on SO2 concentration, often added to grape must. Applying a bulk segregant analysis to a 96-strain-progeny derived from two strains with different abilities to produce H2S, and comparing allelic frequencies along the genome of pools of segregants producing contrasting H2S quantities, we identified two causative regions involved in H2S production in the presence of SO2. A functional genetic analysis allowed the identification of variants in four genes able to impact H2S formation, viz; ZWF1, ZRT2, SNR2, and YLR125W, and involved in functions and pathways not associated with sulfur metabolism until now. These data point out that, in wine fermentation conditions, redox status, and zinc homeostasis are linked to H2S formation while providing new insights into the regulation of H2S production, and a new vision of the interplay between the sulfur assimilation pathway and cell metabolism.


Subject(s)
Hydrogen Sulfide , Wine , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Hydrogen Sulfide/metabolism , Fermentation , Sulfides/metabolism , Wine/analysis , Sulfur Dioxide/metabolism , Sulfur/metabolism
3.
PLoS One ; 12(9): e0184838, 2017.
Article in English | MEDLINE | ID: mdl-28922393

ABSTRACT

Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid) in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.


Subject(s)
Fermentation/physiology , Nitrogen/metabolism , Saccharomyces cerevisiae/growth & development , Signal Transduction/physiology , Stress, Physiological/physiology , Transcriptome/physiology , Wine , Gene Deletion , Glycogen/genetics , Glycogen/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Int J STEM Educ ; 4(1): 20, 2017.
Article in English | MEDLINE | ID: mdl-30631676

ABSTRACT

BACKGROUND: Due to the rising demands for a Canadian workforce with science, technology, engineering, and math (STEM)-related education, there is a need to increase youth engagement in STEM education and programming. Research, however, has shown that youth residing in low-income communities are disproportionately affected by psychosocial barriers, which often inhibit meaningful engagement in STEM programming. Visions of Science Network for Learning (VoSNL) was designed and implemented to address these existing barriers. VoSNL is a charitable organization in Southern Ontario, Canada, that provides weekly community-based STEM programming to low-income and marginalized youth during out-of-school time. VoSNL programming is delivered directly within the community and is free-of-charge for all youth in order to minimize barriers of physical and financial accessibility. The purpose of this report was to provide a detailed description of a core program within VoSNL-Community Science Clubs-and summarize the findings of a process evaluation, specifically the successes and challenges of implementing a community-based, out-of-school STEM program. RESULTS: Program successes are outlined along with the challenges that have been identified through program implementation. Successes include (a) delivering the program within a community context, (b) opportunities for consistent engagement, and (c) establishing positive youth-staff relationships. Challenges include (a) navigating community-based issues, (b) conducting outreach and promotion, and (c) accommodating a wide age range of youth. Further, lessons learned from an evaluation of program implementation are also discussed. CONCLUSIONS: This report provides one of the first program descriptions and process evaluations of a community-based, youth-focused STEM program within a Canadian context. The findings in this report have helped to improve the delivery and evaluation of the VoSNL program and may act as a catalyst for program expansion to reach more youth in marginalized communities. Further, the findings can also provide a strong framework for programmers interested in implementing STEM youth programming in a community context, assist in the replication of similar models in other locations, and enhance STEM learning amongst youth.

5.
Microb Cell Fact ; 14: 68, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25947166

ABSTRACT

BACKGROUND: Wine yeasts can produce undesirable sulfur compounds during alcoholic fermentation, such as SO2 and H2S, in variable amounts depending mostly on the yeast strain but also on the conditions. However, although sulfur metabolism has been widely studied, some of the genetic determinants of differences in sulfite and/or sulfide production between wine yeast strains remain to be identified. In this study, we used an integrated approach to decipher the genetic determinants of variation in the production of undesirable sulfur compounds. RESULTS: We examined the kinetics of SO2 production by two parental strains, one high and one low sulfite producer. These strains displayed similar production profiles but only the high-sulfite producer strain continued to produce SO2 in the stationary phase. Transcriptomic analysis revealed that the low-sulfite producer strain overexpressed genes of the sulfur assimilation pathway, which is the mark of a lower flux through the pathway consistent with a lower intracellular concentration in cysteine. A QTL mapping strategy then enabled us to identify MET2 and SKP2 as the genes responsible for these phenotypic differences between strains and we identified new variants of these genes in the low-sulfite producer strain. MET2 influences the availability of a metabolic intermediate, O-acetylhomoserine, whereas SKP2 affects the activity of a key enzyme of the sulfur assimilation branch of the pathway, the APS kinase, encoded by MET14. Furthermore, these genes also affected the production of propanol and acetaldehyde. These pleiotropic effects are probably linked to the influence of these genes on interconnected pathways and to the chemical reactivity of sulfite with other metabolites. CONCLUSIONS: This study provides new insight into the regulation of sulfur metabolism in wine yeasts and identifies variants of MET2 and SKP2 genes, that control the activity of both branches of the sulfur amino acid synthesis pathway and modulate sulfite/sulfide production and other related phenotypes. These results provide novel targets for the improvement of wine yeast strains.


Subject(s)
Saccharomyces cerevisiae/genetics , Sulfur Compounds/metabolism , Fermentation , Genes, Fungal , Saccharomyces cerevisiae/metabolism , Sulfites
SELECTION OF CITATIONS
SEARCH DETAIL
...