Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Biochem Zool ; 83(2): 207-14, 2010.
Article in English | MEDLINE | ID: mdl-20105071

ABSTRACT

Water exchange of squamate eggs is driven by the difference between the water potentials of eggs and of their nest environment. While osmotic potential is generally assumed to dominate the net water potential of eggs, resistance of the eggshell to stretching also affects egg water potential. We therefore determined osmotic potentials and pressure potentials (mechanical pressure) of eggs of the veiled chameleon Chamaeleo calyptratus over the course of incubation. Because embryos are diapausing gastrulae when eggs are laid and diapause persists several months, the water potential of eggs can be evaluated before it is influenced by the developing embryo. Water uptake during the first 2 wk of incubation was rapid as a result of the large difference between the total water potential of the egg (-848 kPa) and that of its incubation substrate. After about 2 wk, water potential of the egg stabilized at -460 kPa. By day 80 of incubation, the developing embryo and allantois affected water exchange of the egg. The allantoic fluid was initially very dilute, but its osmotic potential decreased to about -200 kPa by the end of incubation. Pressure potential of the egg averaged 25 kPa, with no systematic trend during incubation. The pressure potential exerted by the eggshell reduced the difference between the water potential of the egg and the water potential of the environment, that is, the ability of eggs to take up water. At the time of oviposition, this effect was relatively small, producing a 4%-6% reduction in water potential difference. Once the yolk osmotic potential stabilized, however, the reduction was 12% or more. This observation means that the dynamics of water uptake by squamate eggs cannot be fully understood without consideration of the pressure that is exerted on the contents of eggs by their shells.


Subject(s)
Lizards/physiology , Osmotic Pressure/physiology , Ovum/physiology , Allantois/physiology , Animals , Egg Shell/physiology , Egg Yolk/physiology , Embryo, Nonmammalian/physiology , Ovum/metabolism , Pressure , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...