Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 22(2): 1237-41, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22182498

ABSTRACT

The overproduction of nitric oxide during the biological response to inflammation by the nitric oxide synthase (NOS) enzymes have been implicated in the pathology of many diseases. By removal of the amide core from uHTS-derived quinolone 4, a new series highly potent heteroaromatic-aminomethyl quinolone iNOS inhibitors 8 were identified. SAR studies led to identification of piperazine 22 and pyrimidine 32, both of which reduced plasma nitrates following oral dosing in a mouse lipopolysaccharide challenge assay.


Subject(s)
Enzyme Inhibitors/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Quinolones/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Ligands , Models, Molecular , Molecular Structure , Nitric Oxide Synthase Type II/metabolism , Quinolones/chemical synthesis , Quinolones/chemistry , Stereoisomerism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 21(22): 6888-94, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21986586

ABSTRACT

We have identified and synthesized a series of imidazole containing dimerization inhibitors of inducible nitric oxide synthase (iNOS). The necessity of key imidazole and piperonyl functionality was demonstrated and SAR studies led to the identification of compound 35, which showed a dose dependant inhibition in multiple pain models, including tactile allodynia induced by spinal nerve ligation (Chung model).


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Hyperalgesia/drug therapy , Imidazoles/chemistry , Imidazoles/therapeutic use , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pain/drug therapy , Protein Multimerization/drug effects , Animals , Enzyme Inhibitors/pharmacology , Female , Humans , Imidazoles/pharmacology , Nitric Oxide Synthase Type II/metabolism , Rats , Rats, Inbred Lew
3.
Bioorg Med Chem Lett ; 21(18): 5436-41, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21782428

ABSTRACT

The structure-activity relationship of a series of tricyclic-sulfonamide compounds 11-32 culminating in the discovery of N-[trans-4-(4,5-dihydro-3,6-dithia-1-aza-benzo[e]azulen-2-ylamino)-cyclohexylmethyl]-methanesulfonamide (15, Lu AA33810) is reported. Compound 15 was identified as a selective and high affinity NPY5 antagonist with good oral bioavailability in mice (42%) and rats (92%). Dose dependent inhibition of feeding was observed after i.c.v. injection of the selective NPY5 agonist ([cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]-hPP). In addition, ip administration of Lu AA33810 (10 mg/kg) produced antidepressant-like effects in a rat model of chronic mild stress.


Subject(s)
Benzothiepins/pharmacology , Drug Discovery , Mood Disorders/drug therapy , Receptors, Neuropeptide Y/antagonists & inhibitors , Sulfonamides/pharmacology , Animals , Benzothiepins/chemical synthesis , Benzothiepins/chemistry , Biological Availability , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Mice , Molecular Structure , Mood Disorders/metabolism , Rats , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry
4.
J Pharmacol Exp Ther ; 336(2): 468-78, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21036913

ABSTRACT

Nitric oxide (NO) derived from neuronal nitric-oxide synthase (nNOS) and inducible nitric-oxide synthase (iNOS) plays a key role in various pain and inflammatory states. KLYP961 (4-((2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one) inhibits the dimerization, and hence the enzymatic activity of human, primate, and murine iNOS and nNOS (IC(50) values 50-400 nM), with marked selectivity against endothelial nitric-oxide synthase (IC(50) >15,000 nM). It has ideal drug like-properties, including excellent rodent and primate pharmacokinetics coupled with a minimal off-target activity profile. In mice, KLYP961 attenuated endotoxin-evoked increases in plasma nitrates, a surrogate marker of iNOS activity in vivo, in a sustained manner (ED(50) 1 mg/kg p.o.). KLYP961 attenuated pain behaviors in a mouse formalin model (ED(50) 13 mg/kg p.o.), cold allodynia in the chronic constriction injury model (ED(50) 25 mg/kg p.o.), or tactile allodynia in the spinal nerve ligation model (ED(50) 30 mg/kg p.o.) with similar efficacy, but superior potency relative to gabapentin, pregabalin, or duloxetine. Unlike morphine, the antiallodynic activity of KLYP961 did not diminish upon repeated dosing. KLYP961 also attenuated carrageenin-induced edema and inflammatory hyperalgesia and writhing response elicited by phenylbenzoquinone with efficacy and potency similar to those of celecoxib. In contrast to gabapentin, KLYP961 did not impair motor coordination at doses as high as 1000 mg/kg p.o. KLYP961 also attenuated capsaicin-induced thermal allodynia in rhesus primates in a dose-related manner with a minimal effective dose (≤ 10 mg/kg p.o.) and a greater potency than gabapentin. In summary, KLYP961 represents an ideal tool with which to probe the physiological role of NO derived from iNOS and nNOS in human pain and inflammatory states.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pyrazines/pharmacology , Analgesics/pharmacology , Animals , Cells, Cultured , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/toxicity , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/toxicity , Gastrointestinal Transit/drug effects , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Motor Activity/drug effects , Protein Multimerization , Pyrazines/pharmacokinetics , Pyrazines/toxicity
5.
J Med Chem ; 53(21): 7739-55, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20931971

ABSTRACT

Three isoforms of nitric oxide synthase (NOS), dimeric enzymes that catalyze the formation of nitric oxide (NO) from arginine, have been identified. Inappropriate or excessive NO produced by iNOS and/or nNOS is associated with inflammatory and neuropathic pain. Previously, we described the identification of a series of amide-quinolinone iNOS dimerization inhibitors that although potent, suffered from high clearance and limited exposure in vivo. By conformationally restricting the amide of this progenitor series, we describe the identification of a novel series of benzimidazole-quinolinone dual iNOS/nNOS inhibitors with low clearance and sustained exposure in vivo. Compounds were triaged utilizing an LPS challenge assay coupled with mouse and rhesus pharmacokinetics and led to the identification of 4,7-imidazopyrazine 42 as the lead compound. 42 (KD7332) (J. Med. Chem. 2009, 52, 3047 - 3062) was confirmed as an iNOS dimerization inhibitor and was efficacious in the mouse formalin model of nociception and Chung model of neuropathic pain, without showing tolerance after repeat dosing. Further 42 did not affect motor coordination up to doses of 1000 mg/kg, demonstrating a wide therapeutic margin.


Subject(s)
Analgesics/chemical synthesis , Fluoroquinolones/chemical synthesis , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type I/antagonists & inhibitors , Pain/drug therapy , Pyrazines/chemical synthesis , Administration, Oral , Analgesics/chemistry , Analgesics/pharmacology , Animals , Cell Line , Drug Tolerance , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacology , Humans , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Pain/etiology , Pain Measurement , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/etiology , Protein Multimerization , Pyrazines/chemistry , Pyrazines/pharmacology , Rotarod Performance Test , Structure-Activity Relationship
7.
Bioorg Med Chem Lett ; 20(11): 3361-6, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20434334

ABSTRACT

We identified a new benzothiophene containing Rho kinase inhibitor scaffold in an ultra high-throughput enzymatic activity screen. SAR studies, driven by a novel label-free cellular impedance assay, were used to derive 39, which substantially reduced intraocular pressure in a monkey model of glaucoma-associated ocular hypertension.


Subject(s)
Disease Models, Animal , Glaucoma/enzymology , Ocular Hypertension/enzymology , Protein Kinase Inhibitors/pharmacology , Thiophenes/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Glaucoma/physiopathology , Haplorhini , HeLa Cells , Humans , Intraocular Pressure/drug effects , Ocular Hypertension/physiopathology
9.
Mol Pharmacol ; 76(1): 153-62, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19364813

ABSTRACT

Nitric-oxide synthases (NOS) generate nitric oxide (NO) through the oxidation of l-arginine. Inappropriate or excessive production of NO by NOS is associated with the pathophysiology of various disease states. Efforts to treat these disorders by developing arginine mimetic, substrate-competitive NOS inhibitors as drugs have met with little success. Small-molecule-mediated inhibition of NOS dimerization represents an intriguing alternative to substrate-competitive inhibition. An ultra-high-throughput cell-based screen of 880,000 small molecules identified a novel quinolinone with inducible NOS (iNOS) inhibitory activity. Exploratory chemistry based on this initial screening hit resulted in the synthesis of KLYP956, which inhibits iNOS at low nanomolar concentrations. The iNOS inhibitory potency of KLYP956 is insensitive to changes in concentrations of the substrate arginine, or the cofactor tetrahydrobiopterin. Mechanistic analysis suggests that KLYP956 binds the oxygenase domain in the vicinity of the active site heme and inhibits iNOS and neuronal NOS (nNOS) by preventing the formation of enzymatically active dimers. Oral administration of KLYP956 [N-(3-chlorophenyl)-N-((8-fluoro-2-oxo-1,2-dihydroquinolin-4-yl)methyl)-4-methylthiazole-5-carboxamide] inhibits iNOS activity in a murine model of endotoxemia and blocks pain behaviors in a formalin model of nociception. KLYP956 thus represents the first nonimidazole-based inhibitor of iNOS and nNOS dimerization and provides a novel pharmaceutical alternative to previously described substrate competitive inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Fluoroquinolones/pharmacology , Nitric Oxide Synthase/antagonists & inhibitors , Thiazoles/pharmacology , Administration, Oral , Animals , Cells, Cultured , Dimerization , Humans , Mice , Nitric Oxide/biosynthesis , Nitric Oxide Synthase/chemistry , Nitric Oxide Synthase Type I/chemistry , Nitric Oxide Synthase Type II/chemistry , Pain/drug therapy , Species Specificity
10.
J Med Chem ; 52(9): 3047-62, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19374401

ABSTRACT

There are three isoforms of dimeric nitric oxide synthases (NOS) that convert arginine to citrulline and nitric oxide. Inducible NOS is implicated in numerous inflammatory diseases and, more recently, in neuropathic pain states. The majority of existing NOS inhibitors are either based on the structure of arginine or are substrate competitive. We describe the identification from an ultra high-throughput screen of a novel series of quinolinone small molecule, nonarginine iNOS dimerization inhibitors. SAR studies on the screening hit, coupled with an in vivo lipopolysaccharide (LPS) challenge assay measuring plasma nitrates and drug levels, rapidly led to the identification of compounds 12 and 42--potent inhibitors of the human and mouse iNOS enzyme that were highly selective over endothelial NOS (eNOS). Following oral dosing, compounds 12 and 42 gave a statistical reduction in pain behaviors in the mouse formalin model, while 12 also statistically reduced neuropathic pain behaviors in the chronic constriction injury (Bennett) model.


Subject(s)
Drug Discovery , Fluoroquinolones/administration & dosage , Fluoroquinolones/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , Pain/drug therapy , Protein Multimerization/drug effects , Pyrazines/administration & dosage , Pyrazines/pharmacology , Quinolones/administration & dosage , Quinolones/pharmacology , Administration, Oral , Animals , Cell Line , Constriction, Pathologic/chemically induced , Constriction, Pathologic/drug therapy , Disease Models, Animal , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Fluoroquinolones/chemistry , Fluoroquinolones/therapeutic use , Formaldehyde/toxicity , Humans , Inhibitory Concentration 50 , Lipopolysaccharides/toxicity , Mice , Nitric Oxide Synthase Type II/chemistry , Nitric Oxide Synthase Type II/metabolism , Protein Structure, Quaternary , Pyrazines/chemistry , Pyrazines/therapeutic use , Quinolones/chemistry , Quinolones/therapeutic use , Structure-Activity Relationship , Substrate Specificity
11.
Bioorg Med Chem Lett ; 18(23): 6093-6, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18954983

ABSTRACT

We report the identification of KD5170, a potent mercaptoketone-based Class I and II-histone deacetylase inhibitor that demonstrates broad spectrum cytotoxic activity against a range of human tumor-derived cell lines. KD5170 exhibits robust and sustained histone H3 hyperacetylation in HCT-116 xenograft tumors following single oral or i.v. dose and inhibition of tumor growth following chronic dosing.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Prodrugs/pharmacology , Pyridines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , Inhibitory Concentration 50 , Mice , Mice, Nude , Molecular Structure , Prodrugs/chemistry , Pyridines/chemistry , Structure-Activity Relationship , Sulfonamides/chemistry , Xenograft Model Antitumor Assays
12.
Bioorg Med Chem Lett ; 18(24): 6482-5, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18954984

ABSTRACT

In an effort to discover novel non-hydroxamic acid histone deacetylase (HDAC) inhibitors, a novel alpha-mercaptoketone was identified in a high-throughput screen. Lead optimization of the screening hit, led to a number of potent HDAC inhibitors. In particular, alpha-mercaptoketone 19y (KD5150) exhibited nanomolar in vitro activity and inhibition of tumor growth in vivo.


Subject(s)
Drug Screening Assays, Antitumor , Histone Deacetylase Inhibitors , Ketones/chemistry , Antineoplastic Agents/therapeutic use , Chelating Agents/pharmacology , Chemistry, Pharmaceutical , Drug Design , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Models, Chemical , Neoplasms/drug therapy , Prodrugs/chemistry , Structure-Activity Relationship , Zinc/chemistry
13.
Mol Cancer Ther ; 7(5): 1054-65, 2008 May.
Article in English | MEDLINE | ID: mdl-18483295

ABSTRACT

Histone deacetylase (HDAC) inhibitors have garnered significant attention as cancer drugs. These therapeutic agents have recently been clinically validated with the market approval of vorinostat (SAHA, Zolinza) for treatment of cutaneous T-cell lymphoma. Like vorinostat, most of the small-molecule HDAC inhibitors in clinical development are hydroxamic acids, whose inhibitory activity stems from their ability to coordinate the catalytic Zn2+ in the active site of HDACs. We sought to identify novel, nonhydroxamate-based HDAC inhibitors with potentially distinct pharmaceutical properties via an ultra-high throughput small molecule biochemical screen against the HDAC activity in a HeLa cell nuclear extract. An alpha-mercaptoketone series was identified and chemically optimized. The lead compound, KD5170, exhibits HDAC inhibitory activity with an IC50 of 0.045 micromol/L in the screening biochemical assay and an EC50 of 0.025 micromol/L in HeLa cell-based assays that monitor histone H3 acetylation. KD5170 also exhibits broad spectrum classes I and II HDAC inhibition in assays using purified recombinant human isoforms. KD5170 shows significant antiproliferative activity against a variety of human tumor cell lines, including the NCI-60 panel. Significant tumor growth inhibition was observed after p.o. dosing in human HCT-116 (colorectal cancer), NCI-H460 (non-small cell lung carcinoma), and PC-3 (prostate cancer) s.c. xenografts in nude mice. In addition, a significant increase in antitumor activity and time to end-point occurred when KD5170 was combined with docetaxel in xenografts of the PC-3 prostate cancer cell line. The biological and pharmaceutical profile of KD5170 supports its continued preclinical and clinical development as a broad spectrum anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Histone Deacetylase Inhibitors , Pyridines/pharmacology , Sulfonamides/pharmacology , Animals , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Drug Screening Assays, Antitumor , Female , Humans , Inhibitory Concentration 50 , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Prostatic Neoplasms/drug therapy , Xenograft Model Antitumor Assays
14.
Curr Chem Genomics ; 2: 1-9, 2008 Sep 27.
Article in English | MEDLINE | ID: mdl-20161838

ABSTRACT

The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2alpha and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions.

15.
Bioorg Med Chem Lett ; 17(13): 3562-9, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17498954

ABSTRACT

We have identified and synthesized a series of thiophene containing inhibitors of kinesin spindle protein. SAR studies led to the synthesis of 33, which was co-crystallized with KSP and determined to bind to an allosteric pocket previously described for other known KSP inhibitors.


Subject(s)
Chemistry, Pharmaceutical/methods , Kinesins/antagonists & inhibitors , Thiophenes/chemistry , Allosteric Site , Amides/chemistry , Antimitotic Agents/pharmacology , Cell Line, Tumor , Crystallization , Crystallography, X-Ray , Drug Design , Humans , Inhibitory Concentration 50 , Kinesins/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation
16.
J Med Chem ; 48(8): 3076-9, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-15828846

ABSTRACT

We have discovered high-affinity antagonists (exemplified by 11 and 12) that are the most selective for alpha(1d)-adrenergic receptors (alpha(1d)-AR) reported to date. In cloned receptor assay systems, 12 displays at least 95-fold selectivity for the alpha(1d)-AR over all other G-protein-coupled receptors tested, and the subtype selectivity of 11 was confirmed in pharmacologically defined isolated tissue preparations.


Subject(s)
Adrenergic alpha-1 Receptor Antagonists , Piperazines/chemical synthesis , Spiro Compounds/chemical synthesis , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiology , Humans , In Vitro Techniques , Male , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Piperazines/chemistry , Piperazines/pharmacology , Radioligand Assay , Rats , Receptors, Adrenergic, alpha-1/physiology , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spleen/drug effects , Spleen/physiology , Stereoisomerism , Structure-Activity Relationship , Vas Deferens/drug effects , Vas Deferens/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...