Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38132801

ABSTRACT

Histoplasmosis is a respiratory disease caused by Histoplasma capsulatum, a dimorphic fungus, with high mortality and morbidity rates, especially in immunocompromised patients. Considering the small existing therapeutic arsenal, new treatment approaches are still required. Chitosan, a linear polysaccharide obtained from partial chitin deacetylation, has anti-inflammatory, antimicrobial, biocompatibility, biodegradability, and non-toxicity properties. Chitosan with different deacetylation degrees and molecular weights has been explored as a potential agent against fungal pathogens. In this study, the chitosan antifungal activity against H. capsulatum was evaluated using the broth microdilution assay, obtaining minimum inhibitory concentrations (MIC) ranging from 32 to 128 µg/mL in the filamentous phase and 8 to 64 µg/mL in the yeast phase. Chitosan combined with classical antifungal drugs showed a synergic effect, reducing chitosan's MICs by 32 times, demonstrating that there were no antagonistic interactions relating to any of the strains tested. A synergism between chitosan and amphotericin B or itraconazole was detected in the yeast-like form for all strains tested. For H. capsulatum biofilms, chitosan reduced biomass and metabolic activity by about 40% at 512 µg/mL. In conclusion, studying chitosan as a therapeutic strategy against Histoplasma capsulatum is promising, mainly considering its numerous possible applications, including its combination with other compounds.

2.
Biofouling ; 36(8): 909-921, 2020 09.
Article in English | MEDLINE | ID: mdl-33059473

ABSTRACT

This study investigated the effect of the quorum sensing molecules (QSMs) farnesol, 2-phenylehtanol, tyrosol and tryptophol against planktonic cells, filamentation and biofilms of Sporothrix spp. The antifungal activity of QSMs was evaluated by broth microdilution. QSMs showed MICs in the ranges of 0.01-1 µM (farnesol), 1-8 mM (2-phenylehtanol and tyrosol), and >16 mM (tryptophol). Filamentous biofilm formation was inhibited by farnesol and 2-phenylehtanol and stimulated by tyrosol. Yeast biofilm formation was inhibited by 2-phenylehtanol and tyrosol. Tryptophol did not affect Sporothrix biofilm formation. QSMs showed MICs against mature biofilms of 8-32 µM (farnesol), 8-32 mM (2-phenylehtanol) and 64-128 mM (tyrosol). In conclusion, farnesol, 2-phenylethanol and tyrosol have antifungal activity against planktonic and sessile cells and modulate filamentation and biofilm formation in Sporothrix spp.


Subject(s)
Quorum Sensing , Sporothrix , Antifungal Agents/pharmacology , Biofilms , Farnesol/pharmacology , Plankton
SELECTION OF CITATIONS
SEARCH DETAIL
...