Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Mar Pollut Bull ; 123(1-2): 410-414, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28844457

ABSTRACT

Our study aimed to evaluate crack cocaine effects in different life stages of the marine mussel Perna perna. For this purpose, fertilization rate, embryo-larval development, lysosomal membrane stability and DNA strand breaks were assessed. Effect concentrations in gametes and in larval development were found after 1h (IC50=23.53mg·L-1) and 48h (IC50=16.31mg·L-1), respectively. The highest tested concentration showing no acute toxicity (NOEC) was 10mg·L-1, while the lowest observed effect concentration (LOEC) was 20mg·L-1. NOEC concerning embryo-larval development was 0.625mg·L-1, while the LOEC was 1.25mg·L-1. Cyto-genotoxic effects were evidenced in mussels exposed to crack cocaine concentrations ranging from 5 to 500µg·L-1. Our results report the first data on effects of an illicit drug to marine organisms and should encourage further ecotoxicological studies of these contaminants of emerging concern in coastal ecosystems.


Subject(s)
Crack Cocaine/toxicity , Perna/drug effects , Water Pollutants, Chemical/toxicity , Animals , Aquatic Organisms/drug effects , Crack Cocaine/administration & dosage , DNA Damage/drug effects , Dose-Response Relationship, Drug , Ecotoxicology/methods , Female , Larva/drug effects , Larva/growth & development , Male , Perna/physiology , Water Pollutants, Chemical/administration & dosage
2.
Mar Pollut Bull ; 92(1-2): 99-104, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25662316

ABSTRACT

Apart from the physiological impacts on marine organisms caused by ingesting microplastics, the toxicity caused by substances leaching from these particles into the environment requires investigation. To understand this potential risk, we evaluated the toxicity of virgin (raw) and beach-stranded plastic pellets to the development of embryos of Lytechinus variegatus, simulating transfers of chemical compounds to interstitial water and water column by assays of pellet-water interface and elutriate, respectively. Both assays showed that virgin pellets had toxic effects, increasing anomalous embryonic development by 58.1% and 66.5%, respectively. The toxicity of stranded pellets was lower than virgin pellets, and was observed only for pellet-water interface assay. These results show that (i) plastic pellets act as a vector of pollutants, especially for plastic additives found on virgin particles; and that (ii) the toxicity of leached chemicals from pellets depends on the exposure pathway and on the environmental compartment in which pellets accumulate.


Subject(s)
Embryonic Development/drug effects , Lytechinus/drug effects , Plastics/toxicity , Water Pollutants, Chemical/toxicity , Animals , Echinodermata , Lytechinus/embryology , Plastics/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...