Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Therm Biol ; 101: 103082, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34879910

ABSTRACT

Changes in temperature resulting from climate change can impact the distribution and survival of species, including bees, where temperature may also affect their immune system. Evaluation of immune system activity is often performed by the total count of circulating hemocytes in the hemolymph. However, there are few studies on bees examining the relationship between the amount of circulating hemocytes and temperature. This study evaluated changes of circulating hemocytes in Apis mellifera hemolymph at different temperatures and development stages. Total hemocytes of bees were determined at - 8, 16, 24, and 32 °C - and at different development stages - in vivo larvae, in vitro larvae, newly emerged, and forager bees. A. mellifera larvae had a greater number of circulating hemocytes compared to the other development stages (newly emerged and foragers). Additionally, temperature was an important factor explaining variation of circulating hemocytes in the hemolymph, according to principal component analyses (PCA), as the number of circulating hemocytes was greater at higher temperatures. Therefore, extreme events arising from climate change, such as variation in temperature, can directly impact the immune system of bees, both individually and at the colony level, threatening the distribution and survival of several species.


Subject(s)
Bees/immunology , Temperature , Animals , Hemocytes/immunology , Hemolymph/immunology , Larva/immunology
2.
Micron ; 38(1): 74-80, 2007.
Article in English | MEDLINE | ID: mdl-16822675

ABSTRACT

Histological and histochemical analyses were carried out in order to evaluate the influence of the topical application of a synthetic juvenile hormone on the secretory cycle and degeneration of the venom gland of Apis mellifera. Newly emerged workers received the topical application of synthetic hormone and the results were compared to the normal development of the secretory cycle in virgin and mated queens. The first worker group received the juvenile hormone diluted in hexane (2 microg/microL), the second received only 1 microL of hexane, and the third did not receive any kind of application. After the application the workers were returned to the colony and collected at the ages of 14 and 25 days of adult life. The groups with virgin queens and the other with mated queens, did not receive the treatment. The results show that the individuals treated with juvenile hormone and with pure hexane presented differences in the histological and cytochemical aspects of the secretory cells of the venom gland. The data indicate that both the juvenile hormone and hexane accelerate the activity of the secretory cycle and the degeneration of the venom gland; however, the juvenile hormone proved to be more effective than hexane.


Subject(s)
Bees/cytology , Bees/physiology , Juvenile Hormones/pharmacology , Animals , Exocrine Glands/cytology , Hexanes , Histocytochemistry , Morphogenesis
SELECTION OF CITATIONS
SEARCH DETAIL
...