Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 32(12): 5118-5124, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32595266

ABSTRACT

The vast structural and compositional space of metal halides has recently become a major research focus for designing inexpensive and versatile light sources; in particular, for applications in displays, solid-state lighting, lasing, etc. Compounds with isolated ns2-metal halide centers often exhibit bright broadband emission that stems from self-trapped excitons (STEs). The Sb(III) halides are attractive STE emitters due to their low toxicity and oxidative stability; however, coupling these features with an appropriately robust, fully inorganic material containing Sb3+ in an octahedral halide environment has proven to be a challenge. Here, we investigate Sb3+ as a dopant in a solution-grown metal halide double perovskite (DP) matrix, namely Cs2MInCl6:xSb (M = Na, K, x = 0-100%). Cs2KInCl6 is found to crystallize in the tetragonal DP phase, unlike Cs2NaInCl6 that adopts the traditional cubic DP structure. This structural difference results in distinct emission colors, as Cs2NaInCl6:xSb and Cs2KInCl6:xSb compounds exhibit broadband blue and green emissions, respectively, with photoluminescence quantum yields (PLQYs) of up to 93%. Spectroscopic and computational investigations confirm that this efficient emission originates from Sb(III)-hosted STEs. These fully inorganic DP compounds demonstrate that Sb(III) can be incorporated as a bright emissive center for stable lighting applications.

2.
ChemMedChem ; 12(24): 2066-2073, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29105372

ABSTRACT

Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF4 :Yb3+ /Er3+ nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene). The nanoparticles were coated with a thin shell (≈3 nm) of homogenous silica via the hydrolysis and condensation of tetramethyl orthosilicate. The NaYF4 :Yb3+ /Er3+ @SiO2 particles were further functionalized by methacrylate-terminated groups via 3-(trimethoxysilyl)propyl methacrylate. To introduce a large number of reactive amino groups on the particle surface, methacrylate-terminated NaYF4 :Yb3+ /Er3+ @SiO2 nanospheres were modified with a branched polyethyleneimine (PEI) via Michael addition. Aluminum carboxyphthalocyanine (Al Pc-COOH) was then conjugated to NaYF4 :Yb3+ /Er3+ @SiO2 -PEI nanospheres via carbodiimide chemistry. The resulting NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc particles were finally modified with succinimidyl ester of poly(ethylene glycol) (PEG) in order to alleviate their future uptake by the reticuloendothelial system. Upon 980 nm irradiation, the intensive red emission of NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanoparticles completely vanished, indicating efficient energy transfer from the nanoparticles to Al Pc-COOH, which generates singlet oxygen (1 O2 ). Last but not least, NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanospheres were intratumorally administered into mammary carcinoma MDA-MB-231 growing subcutaneously in athymic nude mice. Extensive necrosis developed at the tumor site of all mice 24-48 h after irradiation by laser at 980 nm wavelength. The results demonstrate that the NaYF4 :Yb3+ /Er3+ @SiO2 -PEI-Pc-PEG nanospheres have great potential as a novel NIR-triggered PDT nanoplatform for deep-tissue cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Nanospheres/chemistry , Neoplasms, Experimental/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Erbium/chemistry , Erbium/pharmacology , Female , Fluorides/chemistry , Fluorides/pharmacology , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Mice , Mice, Nude , Molecular Structure , Neoplasms, Experimental/pathology , Photosensitizing Agents/chemical synthesis , Photosensitizing Agents/chemistry , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Structure-Activity Relationship , Ytterbium/chemistry , Ytterbium/pharmacology , Yttrium/chemistry , Yttrium/pharmacology
3.
Nanotechnology ; 28(17): 175706, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28266926

ABSTRACT

Three sets of ß-NaGdF4:Yb3+, Er3+ nanocrystals (NCs) with different shapes (spherical and more complex flower shapes), different sizes (6-17 nm) and Yb3+ concentrations (2%-15%) were synthesized by a co-precipitation method using oleic acid as a stabilizing agent. The uncommon, single-crystalline flower-shaped NCs were obtained by simply adjusting the fluorine-to-lanthanides molar ratio. Additionally, some of the NCs with different sizes have been covered by the un-doped shell. The crystal phase, shapes and sizes of all NCs were examined using transmission electron microscopy and x-ray diffraction methods. Simultaneously, upconversion luminescence and lifetimes, under 980 nm excitation, were measured and the changes in green to red (G/R) emission ratios as well as emission decay times were correlated with the evolution of nanocrystal sizes and surface to volume ratios. Three different mechanisms responsible for the changes in G/R ratios were presented and discussed.

4.
Acta Bioeng Biomech ; 17(3): 33-40, 2015.
Article in English | MEDLINE | ID: mdl-26687457

ABSTRACT

The surface passivation with titanium sol-gel coatings is a frequently used technique to control the adsorption of selected biological macromolecules and to reduce the exposure of the bulk material to biological matter. Due to the increasing number of new coating-preparation methods and new gel compositions with various types of additives, the quality and homogeneity determination of the surface covering is a critical factor affecting performance of any implanted material. While coating thickness is easy to determine, the homogeneity of the surface distribution of coating materials requires more elaborate methodologies. In the paper, the laser induced breakdown spectroscopy (LIBS) based method, capable to quantitate the homogeneity and uniformity of the europium in titanium dioxide sol-gel coatings on stainless steel surfaces prepared with two different procedures: spin-coating and dip-coating, is presented. The emission intensity of titanium has been used to determine the coating thickness whereas the relative values of europium and titanium emission intensities provide data on the coating homogeneity. The obtained results show that the spin-coating technique provides better surface coverage with titanium dioxide. However, when the surface coating compositions were compared the dip-coating technique was more reliable.


Subject(s)
Coated Materials, Biocompatible/chemistry , Europium/chemistry , Lasers , Spectrum Analysis/methods , Titanium/chemistry , Spectrometry, Fluorescence , Surface Properties
5.
Nanoscale ; 5(1): 429-36, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23187811

ABSTRACT

The purely hexagonal phase of ultrasmall (~10 nm) NaYF(4) nanocrystals (NCs), containing different Eu concentrations, has been obtained by a modified co-thermolysis method. Detailed investigations of the excitation and relaxation mechanisms of the Eu ions in such NCs are reported. Based on the photoluminescence excitation, absorbance, photoluminescence and emission decay times measured as a function of the excitation wavelengths, it has been shown that two Eu sites with different excitation and relaxation characteristics are present in the case of ultrasmall NaYF(4) NCs. It has been shown that, when the Eu concentration increases, strong ion-ion interactions influence the relaxation phenomena in Eu ions, changing their optical properties. Moreover, these ion-ion interactions enable connections between the surface ions and the internal ones via energy transfer from the surface to the NCs core. Furthermore, it has been proposed that the different kinetic properties of the surface Eu ions are mainly caused by the formation of a charge transfer state between the ions and ligand groups attached to the NCs surface.


Subject(s)
Fluorides/chemistry , Ions/chemistry , Models, Chemical , Nanostructures/chemistry , Nanostructures/ultrastructure , Yttrium/chemistry , Electric Conductivity , Electron Transport , Materials Testing , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...