Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
Appl Spectrosc ; : 37028241256397, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835153

ABSTRACT

This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.

2.
Appl Spectrosc ; : 37028241252442, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725274

ABSTRACT

Using linear dichroism theory, one would assume that a z-cut of a uniaxial crystal is equivalent to an x-cut to determine the perpendicular component of the dielectric tensor and the corresponding oscillator parameters. However, Fresnel's equations show that the effect of interfaces in the form of the continuity relations of the different components of the electric field must be considered. A consequence of the continuity relations is that perpendicular modes increase less significantly in strength with increasing angle of incidence than expected. This is a consequence of the fact that it is the inverse of the perpendicular component of the dielectric function that increasingly becomes important with a growing angle of incidence. An inverse dielectric function, however, has typically much smaller values than the dielectric function. An additional consequence is that perpendicular modes are blueshifted and coupled in such a way that oscillator strength is transferred to the higher wavenumber mode. Thus, the spectral signatures of perpendicular modes are often weak and masked by the parallel modes when two modes overlap. Accordingly, to enable dispersion analysis, it is suggested to use a hybrid of the conventional residual sum of squares and the two-trace two-dimensional (2T2D) smart error sum, which can correct systematic multiplicable errors in the experimental spectrum. As demonstrated for fresnoite (Ba2TiSi2O8), this is an important step toward determining the perpendicular component of the dielectric tensor and the corresponding oscillator parameters using dispersion analysis, since asynchronous 2T2D correlation spectra are, in particular, sensitive to perpendicular modes.

3.
Appl Spectrosc ; : 37028241245136, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646741

ABSTRACT

Two-dimensional correlation spectroscopy is used to investigate the intermolecular interaction between two substances dissolved in the same solutions, where the intermolecular interaction is described by two reversible reactions producing two supramolecular aggregates. The severe overlappings expected among the characteristic peaks of the original solute and aggregates make conventional one-dimensional spectra difficult to accurately reflect the physiochemical nature of the intermolecular interaction. The double asynchronous orthogonal sample design (DAOSD) approach is utilized to analyze the simulated data for proof-of-principle demonstration. The patterns of cross-peaks are much more complex compared with the intermolecular interaction described by only a single reaction. Four major groups of cross-peaks with characteristic patterns observed in the pair of DAOSD asynchronous spectra are systematically analyzed and classified. Further analysis of the spectral feature of the cross-peaks of the DAOSD asynchronous spectra is helpful to exact additional information concerning the variation of the peak position and peak width of the aggregates compared with those of the original solute. The result is important to reveal the physicochemical nature of intermolecular interaction between the solutes (e.g., changes in conformation, dynamical behavior, etc.). The pattern of cross-peaks in the corresponding 2D asynchronous spectra may become rather complex when the peak position, peak width, and peak intensity of two supramolecular aggregates change simultaneously. Further work using artificial intelligence techniques to interpret the complex cross-peaks is still being carried out.

4.
Appl Spectrosc ; : 37028231226338, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38298019

ABSTRACT

The apparent enhancement of spectral resolution is one of the attractive features of two-dimensional correlation spectroscopy (2D-COS). Highly overlapped adjacent bands often encountered in one-dimensional spectra may be effectively differentiated and identified by spreading peaks along the second dimension. This differentiating feature or selectivity is especially prominent in asynchronous spectra, where even a slight difference in the variation patterns of overlapped bands in response to a given perturbation results in the generation of cross-peaks. While cross-peaks in asynchronous spectra can identify signals originating from different moieties or bands, they do not effectively specify which regions of spectra actually share the same molecular origin. Overreliance on asynchronous spectra alone risks the potential false negative assessment or lack of sufficient specificity, leading to the failure of classifying signals into a reasonable set of component groups. The combined use of synchronous and asynchronous spectra coupled with the scaling techniques, elimination of anti-correlated negative synchronous peaks, and a robust line shape narrowing method provides a means to achieve both selectivity and specificity for resolution-enhancement of 2D-COS.

5.
Appl Spectrosc ; : 37028241231824, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38419510

ABSTRACT

Clinical antibodies are an important class of drugs for the treatment of both chronic and acute diseases. Their manufacturability is subject to evaluation to ensure product quality and efficacy. One critical quality attribute is deamidation, a non-enzymatic process that is observed to occur during thermal stress, at low or high pH, or a combination thereof. Deamidation may induce antibody instability and lead to aggregation, which may pose immunogenicity concerns. The introduction of a negative charge via deamidation may impact the desired therapeutic function (i) within the complementarity-determining region, potentially causing loss of efficacy; or (ii) within the fragment crystallizable region, limiting the effector function involving antibody-dependent cellular cytotoxicity. Here we describe a transformative solution that allows for a comparative assessment of deamidation and its impact on stability and aggregation. The innovative streamlined method evaluates the intact protein in its formulation conditions. This breakthrough platform technology is comprised of a quantum cascade laser microscope, a slide cell array that allows for flexibility in the design of experiments, and dedicated software. The enhanced spectral resolution is achieved using two-dimensional correlation, co-distribution, and two-trace two-dimensional correlation spectroscopies that reveal the molecular impact of deamidation. Eight re-engineered immunoglobulin G4 scaffold clinical antibodies under control and forced degradation conditions were evaluated for deamidation and aggregation. We determined the site of deamidation, the overall extent of deamidation, and where applicable, whether the deamidation event led to self-association or aggregation of the clinical antibody and the molecular events that led to the instability. The results were confirmed using orthogonal techniques for four of the samples.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123947, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38280244

ABSTRACT

The selective enhancement mechanism in surface-enhanced Raman scattering (SERS) is demonstrated. Two different types of single nanoparticles (Au nanosphere and Au nanorod) were used to investigate the role of the localized surface plasmon resonance (LSPR) in SERS spectra by using the two-trace two-dimensional (2T2D) correlation spectroscopy. The SERS intensities of three probe molecules, 4-mercaptobenzoic acid (4-MBA), 4-aminothiophenol (4-ATP), and 4-bromobenzenethiol (4-BBT), respectively, were enhanced but slightly different when adsorbed on Au nanospheres and Au nanorods. 2T2D correlation SERS spectra clearly showed that even with the same shape of Au nanoparticles, the main factors influencing the SERS enhancement can vary depending on the specific type of SERS tags used. Such subtle difference could not be clearly identified by the conventional spectral analysis. This result sheds light on potential applications of 2T2D correlation spectroscopy. For 4-MBA molecules, the a1 and b2 modes are mainly affected by the Au nanospheres and Au nanorods. For 4-ATP molecules, the a1 and b2 modes related to C-S stretching combined with C-C stretching band are mainly affected by Au nanorods and Au nanospheres. For 4-BBT molecules, the a1 and b2 modes of C-C (aromatic ring) stretching band are mainly affected by Au nanorods and Au nanospheres. This study offers valuable insights into the relationship between nanoparticle shape and SERS enhancement.

7.
Appl Spectrosc ; : 37028231222011, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38178788

ABSTRACT

The evolutionary behavior is examined for heterogeneously distributed hyperspectral images of a simulated biological tissue sample comprising lipid-like and protein-like components during the aging process. Taking a simple planar average of a spectral image loses useful information about the spatially resolved nature of the data. In contrast, multivariate curve resolution (MCR) analysis of a spectral image at a given stage of aging produces a set of loadings of major component groups. Each loading represents the combined spectral contributions of a mixture of similar but not identical constituents (i.e., lipid-like and protein-like components). Temporal analysis of individual component groups using two-dimensional correlation spectroscopy (2D-COS) and MCR provides much-streamlined results without interferences from the overlapped contributions. Grouping of data into separate components also allows for the effective comparison of the parallel processes of lipid oxidation and protein denaturation involving a number of constituents using the heterocomponent 2D-COS analysis. The complex interplays of lipid constituents and protein secondary structures during the tissue aging process are unambiguously highlighted. The possibility of extending this approach to a much more general form of applications using a moving window analysis is also discussed.

8.
Phys Chem Chem Phys ; 25(18): 12863-12871, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37165857

ABSTRACT

The characteristic cluster pattern of cross-peaks in a 2D asynchronous spectrum provides an effective way to reveal the specific physicochemical nature of subtle spectral changes caused by intermolecular interactions. However, the inevitable presence of noise in the 1D spectra used to construct a 2D asynchronous spectrum is significantly amplified, which poses a serious challenge in identifying the correct cluster pattern of the cross-peaks. While mirror symmetry occurs in some types of cross-peaks, it does not occur in other types. The Kolmogorov-Smirnov test provides a statistical means to check whether the mirror symmetry exists or not between a pair of cross-peaks covered by heavy noise. Thus, different types of cross-peak clusters can be distinguished by excavating intrinsic spectral features from the noisy 2D asynchronous spectrum. The effectiveness of this approach in investigating the nature of intermolecular interactions was showcased in both a simulated model system and a real artemisinin/N-methyl pyrrolidone system.

9.
PLoS One ; 18(4): e0284723, 2023.
Article in English | MEDLINE | ID: mdl-37079649

ABSTRACT

Recently a new family of loss functions called smart error sums has been suggested. These loss functions account for correlations within experimental data and force modeled data to obey these correlations. As a result, multiplicative systematic errors of experimental data can be revealed and corrected. The smart error sums are based on 2D correlation analysis which is a comparably recent methodology for analyzing spectroscopic data that has found broad application. In this contribution we mathematically generalize and break down this methodology and the smart error sums to uncover the mathematic roots and simplify it to craft a general tool beyond spectroscopic modelling. This reduction also allows a simplified discussion about limits and prospects of this new method including one of its potential future uses as a sophisticated loss function in deep learning. To support its deployment, the work includes computer code to allow reproduction of the basic results.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122598, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-36996520

ABSTRACT

An apparatus and relevant approach to obtaining IR spectra of solutes from the corresponding aqueous solution were developed. In the experiment, aqueous solutions were converted into aerosols using an ultrasonic or a pneumatic device. Subsequently, water in the nebulized solution is completely gasified under a high-speed flow and low vacuum environment. Via this process, the aqueous solution changes into a mixture of a solute or solutes and gaseous water, whose single-beam IR spectra are collected. Then, the newly developed RMF (retrieving moisture-free IR spectrum) method and the relevant approach described in our recent papers have been adopted to treat the resultant single-beam sample spectrum. As a result, the spectral contribution of the vibrational-rotational peaks of gaseous water can be removed or significantly attenuated, and IR spectra of solutes can be obtained. The approach shows an obvious advantage in retrieving the IR spectrum of volatile solutes from its aqueous solution. This capability is showcased by obtaining IR spectra of isopropanol and ethyl acetate successfully. IR spectra of these compounds can be retrieved even if the concentration of the solute is below 10 wt%. Moreover, atomization via ultrasonic/pneumatic methods offers a mild way to gasify solutes whose boiling points are remarkably higher than that of water. This advantage is manifested by acquiring IR spectra of 1-butanol and 1,2-propanediol in the gaseous phase under ambient conditions.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121636, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36229084

ABSTRACT

In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.


Subject(s)
Biological Products , Proteins , Pharmaceutical Preparations , Polymers , Proteins/chemistry , Spectrum Analysis, Raman
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121750, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36030669

ABSTRACT

This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.


Subject(s)
Spectrum Analysis , Spectrum Analysis/methods
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121861, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36327796

ABSTRACT

Raman spectra of bioplastic poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHx at 13.8 % Hx) were recorded between -250 cm-1 and 3200 cm-1 during isothermal crystallization at 25°C after quenching from the melt in liquid nitrogen. At room temperature the crystallization proceeds slowly, so spectra were recorded over a 14-hour period. While there are spectral changes throughout the spectrum, the focus was on interpretable bands known to be sensitive to crystalline form. These bands included the carbonyl band that sharpens and shifts, a pair of bands on the high energy side of the carbon-hydrogen stretch, and a low frequency band that we assign to the molecular phonon in the crystal unit cell. After appropriate pre-processing of the spectra, they were further analyzed by 2D-COS (two-dimensional correlation spectroscopy) that provides determination of the order in which the polymer functional regions assemble into the crystalline state. According to this analysis one of the methyl CH's interacts with the carbonyl bond to produce a line at 3000 cm-1. Following that, multiple changes appear in the carbonyl region, the strong CH band at 2930 cm-1 of the crystalline phase grows, then the 80 cm-1 phonon band, and the splitting of the methyl CH only appears after the phonon. From this sequence one can derive a picture of how the polymer unit locks into the crystal form. This can be of interest to commercialization of the materials because mechanical properties are intimately controlled by the crystallinity of the material. By understanding how the crystallization process proceeds, it can be engineered to be "fit for purpose" for a polymer targeted for a specific use.


Subject(s)
Polyhydroxyalkanoates , Spectrum Analysis, Raman , Crystallization , Spectrum Analysis, Raman/methods , Hydroxybutyrates/chemistry , Hydrogen Bonding
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122004, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36327803

ABSTRACT

We proposed a modified and improved approach to removing the interference of moisture from an IR spectrum and the corresponding second derivative spectrum. The temperature fluctuation in the air of the optical path and baseline-drift lead to the small but persistent presence of the interference of moisture. The problem has been successfully addressed by adopting a double-matching strategy. Additionally, two-dimensional correlationspectra (2D-COS) are generated using the second derivative or third derivative spectrum of the negative base 10 logarithms of the single-beam spectra, thereby removing the linear slope or quadratic portion of baseline-drift. Using the newly adopted approach, the residual interferences of moisture are attenuated. We applied the new approach to the IR spectra and the second derivative spectra of neat hexadecanol and biaxially oriented polypropylene (BOPP) film, and some promising preliminary results are obtained. In hexadecanol, two highly overlapping peaks at 1464 and 1463 cm-1 are revealed. In BOPP, the envelope at 1458 cm-1 is found to be composed of a number of sub-peaks.

15.
Anal Chem ; 94(45): 15621-15630, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36332132

ABSTRACT

Estimation of the stoichiometric ratio of a supramolecular aggregate formed by different compounds is very important in elucidating the structure and function of the aggregate. Many spectroscopic methods used to estimate the stoichiometric ratios of coordination complexes become invalid when characteristic peaks of the aggregate overlap with peaks of compounds that form the aggregate. Previously, we combined the asynchronous orthogonal sample design with Job's method to address the abovementioned problem. However, the interference of noise may lead to incorrect results. Herein, a new method has been developed. In the generation of corresponding Job's curve, the intensity of a cross peak at a single apex is replaced by the volume of the cross peak. Since most noise is canceled in the calculation of the volume of the cross peak, resultant Job's curve is robust to noise. Moreover, the Jonckheere-Terpstra statistical test, a famous nonparametric method to detect whether the data has an upward or downward trend, could further reduce the risk of yielding incorrect results caused by noise. We have applied this approach to two real-world examples (resveratrol/ß-Cyclodextrin (ß-CD) and N, N-diethyl-N'-benzoylthiourea (DEBT)/Cu2+) with satisfactory results. The method described in this paper provides a robust way to measure the stoichiometric ratio in supramolecular systems.

16.
Anal Chem ; 94(36): 12360-12367, 2022 09 13.
Article in English | MEDLINE | ID: mdl-36048426

ABSTRACT

When diffusion coefficients of different components in a mixture are similar, NMR spectra of pure individual components are difficult to be obtained via a diffusion-ordered spectroscopy (DOSY) experiment. Two-dimensional correlation spectroscopy (2D-COS) is used to analyze the data from the DOSY experiment. Through the properties of the systematic absence of cross-peak (SACP) in the 2D asynchronous spectra, spectra of pure components can be obtained even if their diffusion coefficients are similar. However, fluctuations in peak-position and peak-width are often unavoidable in NMR spectra, which makes SACPs unrecognizable. To address the problem, a 2D quotient spectrum is used to identify the masked SACPs. However, undesirable interference peaks due to the fluctuations in peak-position and peak-width are still present when we extract a spectrum of a component by slicing the 2D asynchronous spectrum across the SACP. A genetic algorithm (GA) is used to select a suitable subset of spectra where the diversities of peak-position and peak-width are significantly reduced. Then, we used the selected spectra to construct a refined 2D asynchronous spectrum so that the spectra of pure components with significant attenuated interference can be obtained. The above approach has been proven to be effective on a model system and a real-world example, demonstrating that 2D-COS possesses a bright perspective in the analysis of the bilinear data from DOSY experiments.


Subject(s)
Algorithms , Magnetic Resonance Imaging , Diffusion , Magnetic Resonance Spectroscopy/methods
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121684, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35933776

ABSTRACT

Community drug checking provides an essential service that responds to the unpredictable and variable supply of illicit drugs. Point of care detection of trace components using portable infrared spectrometers is a harm reduction measure to prevent overdose. This study investigates the ability of weighted subtraction and two-trace two-dimensional (2T2D) correlation analysis to reveal the presence of heroin in an opioid mixture that contains heroin and fentanyl mixed with caffeine as a cutting agent. In both methods, a spectral trace was identified that provided reasonably high correlation scores to heroin when compared to entries in drug libraries. The two-trace correlation analysis produced a higher match score, suggesting that future improvements in spectral unmixing methods may enhance the reliability of detecting trace components in drugs.


Subject(s)
Drug Contamination , Heroin , Analgesics, Opioid/analysis , Drug Contamination/prevention & control , Fentanyl/analysis , Heroin/analysis , Reproducibility of Results , Spectrophotometry, Infrared
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121573, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35870431

ABSTRACT

This comprehensive survey review, as the first of three parts, compiles past developments and early concepts of two-dimensional correlation spectroscopy (2D-COS) and subsequent evolution, as well as its early applications in various fields for the last 35 years. It covers past review articles, books, proceedings, and numerous research papers published on 2D-COS. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields confirms that it is well accepted as a powerful analytical technique to provide the in-depth understanding of systems of interest.


Subject(s)
Spectrum Analysis , Spectrum Analysis/methods
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 277: 121258, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-35461063

ABSTRACT

The application of two-trace two-dimensional (2T2D) correlation analysis to a number of spectra consisting of more than a simple pair is explored, especially when such spectra are randomly collected without knowing the sampling order. Calculation and interpretation of 2T2D correlation spectra are briefly reviewed, and a systematic procedure to identify the set of characteristic bands, which are mutually asynchronous and least overlapped with each other, is described. 2T2D correlation is applied to individual spectra by selecting a representative reference spectrum, such as the average of the whole dataset. A slice of an asynchronous 2T2D spectrum at a characteristic band is devoid of the spectral contribution from the species represented by the band. Since 2T2D analysis may be applied to the whole set of spectra, and each 2T2D asynchronous spectrum yields a set of slices for different characteristic bands, it is possible to generate a series of 2T2D slices obtained at a given characteristic band. By applying the generalized 2D correlation or a successive 2T2D analysis to such slices, one can obtain excellent estimates of the pure component spectra of the mixture, which are comparable to the results from other curve resolution techniques.

20.
Inorg Chem ; 61(16): 6138-6148, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35412316

ABSTRACT

Single-crystal structures of myo-inositol complexes with erbium ([Er2(C6H11O6)2(H2O)5Cl2]Cl2(H2O)4, denoted ErI hereafter) and strontium (Sr(C6H12O6)2(H2O)2Cl2, denoted SrI hereafter) are described. In ErI, deprotonation occurs on an OH of myo-inositol, although the complex is synthesized in an acidic solution, and the pKa values of all of the OHs in myo-inositol are larger than 12. The deprotonated OH is involved in a µ2-bridge. The polarization from two Er3+ ions activates the chemically relatively inert OH and promotes deprotonation. In the stable conformation of myo-inositol, there are five equatorial OHs and one axial OH. The deprotonation occurs on the only axial OH, suggesting that the deprotonation possesses characteristics of regioselectivity/chiral selectivity. Two Er3+ ions in the µ2-bridge are stabilized by five-membered rings formed by chelating Er3+ with an O-C-C-O moiety. As revealed by the X-ray crystallography study, the absolute values of the O-C-C-O torsion angles decrease from ∼60 to ∼45° upon chelating. Since the O-C-C-O moiety is within a six-membered ring, the variation of the torsion angle may exert distortion of the chair conformation. Quantum chemistry calculation results indicate that an axial OH flanked by two equatorial OHs (double ax-eq motif) is favorable for the formation of a µ2-bridge, accounting for the selectivity. The double ax-eq motif may be used in a rational design of high-performance catalysts where deprotonation with high regioselectivity/chiral selectivity is carried out.


Subject(s)
Inositol , Catalysis , Crystallography, X-Ray , Inositol/chemistry , Models, Molecular , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...