Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Res ; 96: 45-53, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25697393

ABSTRACT

The use of NR2B antagonists in Parkinsonism is still controversial. To examine their anti-parkinsonian effects, the NR2B antagonist, ifenprodil, and L-DOPA were administered together and separately in hemiparkinsonian rats (hemi-PD) that were subjected to a cylinder test. Recovery from hypoactivity was achieved by single administration of 3-7 mg/kg of L-DOPA; however, improvement in the deficit of bilateral forelimb use was not observed. When administered alone, ifenprodil had no anti-parkinsonian effects; however, combined administration of ifenprodil and 7 mg/kg of L-DOPA significantly reversed the deficit of bilateral forelimb use without adversely affecting the L-DOPA-induced improvement in motor activity. Next, in order to identify the brain area influenced by L-DOPA and ifenprodil, quantitative analysis of L-DOPA-induced c-Fos immunoreactivity was performed in various brain areas of hemi-PD following administration of L-dopa with and without ifenprodil. Among brain areas with robust c-Fos expression within the motor loop circuit in dopamine-depleted hemispheres, co-administered ifenprodil markedly attenuated L-DOPA-induced c-Fos expression in only the subthalamic nucleus (STN), suggesting that the STN is the primary target for the anti-parkinsonian action of NR2B antagonists.


Subject(s)
Antiparkinson Agents/administration & dosage , Levodopa/administration & dosage , Parkinsonian Disorders/prevention & control , Piperidines/administration & dosage , Animals , Brain/drug effects , Brain/metabolism , Forelimb , Male , Motor Activity/drug effects , Parkinsonian Disorders/chemically induced , Proto-Oncogene Proteins c-fos/metabolism , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/metabolism
2.
Neurosci Res ; 80: 32-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24440197

ABSTRACT

Paclitaxel, one of the chemotherapeutic agents clinically used to treat several types of cancer, produces side effects such as peripheral neuropathy, sensory abnormalities, and hyperalgesia. Since hyperalgesia remains after cessation of paclitaxel therapy and becomes chronic, we hypothesize that alteration in memory and the cognitive process of pain underlies hyperalgesia. To test this hypothesis, we examined whether drug-induced hyperalgesia alters the affective component of pain and the NMDA-NR1 and mGluR1 receptors as a mediator for signal transmission and memory of pain. Mechanical sensitivity was measured by von Frey filament test after intraperitoneal injection of paclitaxel in rats. Paclitaxel-induced hyperalgesia was confirmed over almost the entire 14-day period of observation after the treatment. The effect of paclitaxel-induced hyperalgesia on the affective component of pain was assessed using pain-induced place aversion. The formalin-induced conditioned place aversion was completely abolished in the paclitaxel-treated rats. Immunoblot analysis of NR1 and mGluR1 protein levels in various brain regions was performed after paclitaxel treatment. Treatment reduced only the NR1 expression within the frontal cortex. These results suggest that the hypofunction of memory processes with the reduced NMDA receptors in the frontal cortex might be involved in the expression of abnormal emotional behaviors accompanied by hyperalgesia.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Frontal Lobe/drug effects , Hyperalgesia/chemically induced , Hyperalgesia/pathology , Paclitaxel/toxicity , Receptors, N-Methyl-D-Aspartate/metabolism , Analysis of Variance , Animals , Conditioning, Operant/drug effects , Formaldehyde/adverse effects , Frontal Lobe/metabolism , Hot Temperature/adverse effects , Male , Nociception/drug effects , Nociception/physiology , Pain Measurement , Pain Threshold/drug effects , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/genetics
3.
Brain Res ; 1306: 159-67, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19766606

ABSTRACT

To test the hypothesis that the cellular mechanism whereby chronic deep brain stimulation of the subthalamic nucleus (STN-DBS) induces the improvement of motor deficits lasting after stimulation in the hemiparkinsonian (hemi-PD) rat involves the NMDA receptor-dependent processes in neurons receiving afferents from the STN, we examined whether the NMDA receptor antagonist prevents the alleviating after-effect of repeated STN-DBS on motor deficits in hemi-PD. The cylinder test was performed before and after repeated STN-DBS over 3 days in hemi-PD that received a unilateral injection of 6-OHDA into the medial forebrain bundle 3 weeks prior to STN-DBS experiments. No significant improvement in the reduced frequency of forelimb use and forelimb-use asymmetry was seen in the cylinder test after the single STN-DBS, while, when the STN-DBS was applied three times at intervals of 24 h, the improvement became apparent and significant only in the reduced frequency of forelimb use (akinesia) after termination of the stimulation, suggesting the alleviating after-effect of chronic stimulation. Then, the effects of intraperitoneal administration of the non-competitive NMDA receptor antagonist MK-801 and the competitive NMDA receptor antagonist CPP on the alleviating after-effect of the STN-DBS were examined in cylinder tests performed before and after repeated STN-DBS for 3 days in hemi-PD. Both MK-801 (0.1 mg/kg) and CPP (0.5 mg/kg) completely prevented the improvement of the akinetic motor deficit after repeated STN-DBS. These results support the hypothesis that activation of the NMDA receptor and subsequent cellular processes in neurons receiving the afferents from the STN may involve in the mechanism underlying the alleviating after-effect of chronic STN-DBS on the akinetic motor deficit in hemi-PD.


Subject(s)
Deep Brain Stimulation , Dyskinesias/therapy , Parkinsonian Disorders/therapy , Receptors, N-Methyl-D-Aspartate/metabolism , Subthalamic Nucleus/physiopathology , Animals , Dizocilpine Maleate/pharmacology , Dyskinesias/physiopathology , Excitatory Amino Acid Antagonists/pharmacology , Forelimb , Male , Motor Activity/drug effects , Motor Activity/physiology , Neuropsychological Tests , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Piperazines/pharmacology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Subthalamic Nucleus/drug effects , Time Factors
4.
Brain Dev ; 30(5): 313-20, 2008 May.
Article in English | MEDLINE | ID: mdl-18358657

ABSTRACT

Synaptic release of the excitatory amino acid glutamate is considered as an important mechanism in the pathogenesis of ischemic brain damage in neonates. Synaptotagmin I is one of exocytosis-related proteins at nerve terminals and considered to accelerate the exocytosis of synaptic vesicles by promoting fusion between the vesicles and plasma membrane. To test the possibility that antisense in vivo knockdown of synaptotagmin I modulates the exocytotic release of glutamate, thus suppressing the excitotoxic intracellular processes leading to neuronal death following ischemia in the neonatal brain, we injected antisense oligodeoxynucleotides (ODNs) targeting synaptotagmin I (0.3 (AS), 0.15 (0.5 AS), or 0.03 microg (0.1 AS), or vehicle) into the lateral ventricles of 7-day-old rats by using a hemagglutinating virus of Japan (HVJ)-liposome mediated gene transfer technique. At 10 days of age, these rats were subjected to an electrical coagulation of the right external and internal carotid arteries, then the insertion of a solid nylon thread into the right common carotid artery toward the ascending aorta up to 10-12 mm from the upper edge of the sternocleidomastoid muscle. Cerebral ischemia was induced by clamping the left external and internal carotid arteries with a clip, and ended by removing the clip 2h later. Twenty-four hours after the end of ischemia, the extent of ischemic brain damage was neuropathologically and quantitatively evaluated in the neocortex and striatum. While the relative volume of damage in the cerebral cortex and striatum of the vehicle group was extended to 40% and 13.7%, respectively, that in the AS group was significantly reduced to 4.8% and 0.6%. In the 0.5 AS group, the relative volume of ischemic damage in the cerebral cortex and striatum was reduced to 20.5% and 15.4%, respectively, and the difference between the 0.5 AS group and vehicle group was statistically significant in the neocortex, but not in the striatum. These results indicated that antisense in vivo knockdown of synaptotagmin I successfully attenuated ischemic brain damage in neonatal rats and that the effect was dose-dependent. It was also suggested that this treatment was more effective in the neocortex than in the striatum in neonatal rats.


Subject(s)
Brain Injuries/therapy , Gene Transfer Techniques , Oligodeoxyribonucleotides, Antisense/therapeutic use , Sendai virus/physiology , Synaptotagmin I/metabolism , Animals , Animals, Newborn , Brain Injuries/pathology , Brain Ischemia/complications , Corpus Striatum/drug effects , Corpus Striatum/pathology , Corpus Striatum/virology , Dose-Response Relationship, Drug , Liposomes/therapeutic use , Neocortex/drug effects , Neocortex/pathology , Neocortex/virology , Rats , Rats, Wistar , Synaptotagmin I/genetics
5.
Neurosci Res ; 51(3): 299-308, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15710494

ABSTRACT

In view of recent findings that suggest that the nigrostriatal dopamine (DA) system plays a role in motor control and the acquisition of habits and skills, we hypothesized that the striatum-based function underlying the acquisition of skilled behaviors might be more vulnerable to dopamine depletion than the motor control. To test this hypothesis, we investigated whether impaired acquisition of skilled behaviors occurs in a pre-symptomatic stage model of Parkinson's disease (PD). By using the microdialysis method and the 6-OHDA-technique to destroy dopamine neurons, we confirmed that rats with unilateral partial lesions of the nigral dopamine cells by 6-OHDA are suitable for a pre-symptomatic stage model of Parkinson's disease. The rats in this model exhibited moderate disruption of striatal dopamine release function and relatively intact motor functions. In a rotarod test, the impaired acquisition of skilled behavior occurred in rats with bilateral partial lesions of the nigral dopamine cells by 6-OHDA. These rats displayed intact general motor functions, such as locomotor activity, adjusting steps, equilibrium function and muscle strength. Based on these results, we concluded that the striatum-based function underlying the acquisition of skilled behaviors or sensorimotor learning may be more vulnerable to dopamine depletion than the motor control.


Subject(s)
Corpus Striatum/metabolism , Dopamine/deficiency , Motor Skills/physiology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Amphetamine/pharmacology , Animals , Behavior, Animal , Cell Count/methods , Cell Survival/drug effects , Central Nervous System Stimulants/pharmacology , Corpus Striatum/drug effects , Disease Models, Animal , Exploratory Behavior/drug effects , Functional Laterality , Hindlimb Suspension/methods , Immunohistochemistry/methods , Male , Medial Forebrain Bundle/drug effects , Medial Forebrain Bundle/metabolism , Microdialysis/methods , Motor Activity/drug effects , Motor Activity/physiology , Oxidopamine/toxicity , Parkinson Disease/etiology , Rats , Rats, Wistar , Regression Analysis , Rotarod Performance Test/methods , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Sympatholytics/toxicity , Time Factors , Tyrosine 3-Monooxygenase/metabolism
6.
Brain Res ; 987(2): 194-200, 2003 Oct 17.
Article in English | MEDLINE | ID: mdl-14499963

ABSTRACT

To examine the role of mGluR1 (a subunit of the group I metabotropic glutamate receptor) in the nociceptive responses of rats following a subcutaneous injection of formalin into the plantar surface of the hind paw, we delivered antisense oligonucleotides (ODNs) against mGluR1 into the rat lumbar spinal cord (L3-L5) intrathecally using an HVJ-liposome-mediated gene transfer method. Rats treated with a single injection of mGluR1 antisense ODNs into the intrathecal space of the lumbar spinal cord showed a marked reduction of the early-sustained phase of formalin-induced nociceptive responses, but not of their acute phase. The reduction of nociceptive behavioral responses became apparent at day 2 after the antisense treatment and lasted for 2 days. This corresponded to a long-lasting down-regulation (46%) of mGluR1 expression in the lumbar cord. This down-regulated mGluR1 was observed at day 2 and persisted until day 4 after the intrathecal infusion of mGluR1 antisense ODN. In contrast, rats treated with mGluR1 sense or mismatch ODNs showed none of these changes. These results suggest that mGluR1 may play a crucial role in the sustained nociception of formalin-induced behavioral responses.


Subject(s)
Oligonucleotides, Antisense/administration & dosage , Pain Measurement/drug effects , Receptors, Metabotropic Glutamate/biosynthesis , Receptors, Metabotropic Glutamate/deficiency , Spinal Cord/metabolism , Animals , Down-Regulation/drug effects , Down-Regulation/physiology , Gene Transfer Techniques , Male , Oligonucleotides, Antisense/genetics , Pain Measurement/methods , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/genetics , Spinal Cord/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...