Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 812: 152474, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34952068

ABSTRACT

Long-chain unsaturated alkenones produced by haptophyte algae are widely used as paleotemperature indicators. The unsaturation relationship to temperature is linear at mid-latitudes, however, non-linear responses detected in subpolar regions of both hemispheres have suggested complicating factors in these environments. To assess the influence of biotic and abiotic factors in alkenone production and preservation in the Subantarctic Zone, alkenone fluxes were quantified in three vertically-moored sediment traps deployed at the SOTS observatory (140°E, 47°S) during a year. Alkenone fluxes were compared with coccolithophore assemblages, satellite measurements and surface-water properties obtained by sensors at SOTS. Alkenone-based temperature reconstructions generally mirrored the seasonal variations of SSTs, except for late winter when significant deviations were observed (3-10 °C). Annual flux-weighted averages in the 3800 m trap returned alkenone-derived temperatures ~1.5 °C warmer than those derived from the 1000 m trap, a distortion attributed to surface production and signal preservation during its transit through the water column. Notably, changes in the relative abundance of E. huxleyi var. huxleyi were positively correlated with temperature deviations between the alkenone-derived temperatures and in situ SSTs (r = 0.6 and 0.7 at 1000 and 2000 m, respectively), while E. huxleyi var. aurorae, displayed an opposite trend. Our results suggest that E. huxleyi var. aurorae produces a higher proportion of C37:3 relative to C37:2 compared to its counterparts. Therefore, the dominance of var. aurorae south of the Subtropical Front could be at least partially responsible for the less accurate alkenone-based SST reconstructions in the Southern Ocean using global calibrations. However, the observed correlations were largely influenced by the samples collected during winter, a period characterized by low particle fluxes and slow sinking rates. Thus, it is likely that other factors such as selective degradation of the most unsaturated alkenones could also account for the deviations of the alkenone paleothermometer.


Subject(s)
Haptophyta , Ecotype , Oceans and Seas , Temperature
2.
Sci Rep ; 10(1): 2594, 2020 02 13.
Article in English | MEDLINE | ID: mdl-32054880

ABSTRACT

Ocean acidification is expected to have detrimental consequences for the most abundant calcifying phytoplankton species Emiliania huxleyi. However, this assumption is mainly based on laboratory manipulations that are unable to reproduce the complexity of natural ecosystems. Here, E. huxleyi coccolith assemblages collected over a year by an autonomous water sampler and sediment traps in the Subantarctic Zone were analysed. The combination of taxonomic and morphometric analyses together with in situ measurements of surface-water properties allowed us to monitor, with unprecedented detail, the seasonal cycle of E. huxleyi at two Subantarctic stations. E. huxleyi subantarctic assemblages were composed of a mixture of, at least, four different morphotypes. Heavier morphotypes exhibited their maximum relative abundances during winter, coinciding with peak annual TCO2 and nutrient concentrations, while lighter morphotypes dominated during summer, coinciding with lowest TCO2 and nutrients levels. The similar seasonality observed in both time-series suggests that it may be a circumpolar feature of the Subantarctic zone. Our results challenge the view that ocean acidification will necessarily lead to a replacement of heavily-calcified coccolithophores by lightly-calcified ones in subpolar ecosystems, and emphasize the need to consider the cumulative effect of multiple stressors on the probable succession of morphotypes.

3.
Nature ; 407(6805): 695-702, 2000 Oct 12.
Article in English | MEDLINE | ID: mdl-11048709

ABSTRACT

Changes in iron supply to oceanic plankton are thought to have a significant effect on concentrations of atmospheric carbon dioxide by altering rates of carbon sequestration, a theory known as the 'iron hypothesis'. For this reason, it is important to understand the response of pelagic biota to increased iron supply. Here we report the results of a mesoscale iron fertilization experiment in the polar Southern Ocean, where the potential to sequester iron-elevated algal carbon is probably greatest. Increased iron supply led to elevated phytoplankton biomass and rates of photosynthesis in surface waters, causing a large drawdown of carbon dioxide and macronutrients, and elevated dimethyl sulphide levels after 13 days. This drawdown was mostly due to the proliferation of diatom stocks. But downward export of biogenic carbon was not increased. Moreover, satellite observations of this massive bloom 30 days later, suggest that a sufficient proportion of the added iron was retained in surface waters. Our findings demonstrate that iron supply controls phytoplankton growth and community composition during summer in these polar Southern Ocean waters, but the fate of algal carbon remains unknown and depends on the interplay between the processes controlling export, remineralisation and timescales of water mass subduction.


Subject(s)
Iron , Phytoplankton , Atmosphere , Carbon Dioxide/metabolism , Eutrophication , Fertilizers , Forecasting , Iron/metabolism , Light , Models, Biological , Oceans and Seas , Phytoplankton/metabolism , Seawater , Time Factors
4.
J Cell Sci ; 113 ( Pt 13): 2455-62, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10852824

ABSTRACT

It is generally assumed that the vimentin intermediate filament network present in most mesenchymally-derived cells is in part responsible for the strength and integrity of these cells, and necessary for any tissue movements that require the generation of significant tractional forces. Surprisingly, we have shown that transgenic KO mice deficient for vimentin are apparently able to undergo embryonic development absolutely normally and go onto develop into adulthood and breed without showing any obvious phenotype. However, fibroblasts derived from these mice are mechanically weak and severely disabled in their capacity to migrate and to contract a 3-D collagen network. To assess whether these functions are necessary for more challenging tissue movements such as those driving in vivo tissue repair processes, we have analysed wound healing ability in wild-type versus vimentin-deficient embryos and adult mice. Wounds in vimentin-deficient adult animals showed delayed migration of fibroblasts into the wound site and subsequently retarded contraction that correlated with a delayed appearance of myofibroblasts at the wound site. Wounds made to vimentin-deficient embryos also failed to heal during the 24 hour culture period it takes for wild-type embryos to fully heal an equivalent wound. By DiI marking the wound mesenchyme and following its fate during the healing process we showed that this impaired healing is almost entirely due to a failure of mesenchymal contraction at the embryonic wound site. These observations reveal an in vivo phenotype for the vimentin-deficient mouse, and challenge the dogma that key morphogenetic events occurring during development require generation of significant tractional forces by mesenchymal cells.


Subject(s)
Vimentin/deficiency , Wound Healing/physiology , Age Factors , Animals , Embryo, Mammalian , Fibroblasts/cytology , Fibroblasts/metabolism , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Knockout , Time Factors
5.
Anat Embryol (Berl) ; 195(3): 215-28, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9084820

ABSTRACT

Skin wounds in young embryos heal rapidly, efficiently and perfectly without scar formation, an ability that is lost as developmental proceeds. The tissue movements of repair (re-epithelialisation and connective tissue contraction) are the same in embryos as adults, but the means by which these movements are achieved are very different. Whilst adult wound front epidermal cells crawl forwards over the exposed substratum to close a defect, a gap in the embryonic epidermis is closed by contraction of a rapidly assembled actin purse-string. In the adult wound situation connective tissue contraction is brought about by specialist contractile myofibroblasts, but in the embryo standard embryonic fibroblast exert similar tractional forces to bring the wound margins together. We review what is known of the cellular sources and the levels of various growth factor signals that might activate wound closure movements during embryonic and adult repair and how this knowledge might help in designing therapeutic strategies to enhance adult healing. Finally we discuss how studies of the tissue movements of embryonic wound healing may guide our understanding of more natural tissue movements that occur during embryogenesis, such as gastrulation and neurulation.


Subject(s)
Embryo, Mammalian/physiology , Embryo, Nonmammalian , Wound Healing/physiology , Actins/physiology , Animals , Cell Movement/physiology , Connective Tissue/physiology , Extracellular Matrix/physiology , Granulation Tissue/physiology , Growth Substances/physiology , Inflammation/physiopathology , Microscopy, Electron , Microscopy, Electron, Scanning , Time Factors , Wound Healing/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...