Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Org Lett ; 6(4): 473-6, 2004 Feb 19.
Article in English | MEDLINE | ID: mdl-14961601

ABSTRACT

[structure: see text] Novel 6-substituted lavendamycins have been synthesized for the first time. The key step in these syntheses is a Pictet-Spengler condensation (Scheme 1). Efficient methods for the synthesis of each compound, including a novel reaction for the facile introduction of alkylamino groups at the C-6 position of the lavendamycin system, are discussed. Possible mechanisms for these reactions are also presented.


Subject(s)
Antibiotics, Antineoplastic/chemical synthesis , Streptomyces/chemistry , Streptonigrin/analogs & derivatives , Streptonigrin/chemical synthesis , Catalysis , Indicators and Reagents , Molecular Structure , Structure-Activity Relationship
2.
Toxicology ; 168(3): 241-50, 2001 Nov 30.
Article in English | MEDLINE | ID: mdl-11684321

ABSTRACT

The nephrotoxicity induced by the agricultural fungicide N-(3,5-dichlorophenyl)succinimide (NDPS) is mediated through oxidative metabolites of NDPS. Oxidation of the succinimide ring in NDPS yields the nephrotoxic metabolites N-(3,5-dichlorophenyl)-2-hydroxysuccinimide (NDHS) and its hydrolysis product N-(3,5-dichlorophenyl)-2-hydroxysuccinamic acid (2-NDHSA). The oxidation of NDPS on the succinimide ring also introduces an asymmetric carbon atom into these NDPS metabolites, so that R- and S- enantiomers of NDHS and 2-NDHSA are possible. The purpose of this study was to begin to explore the importance of the stereochemical orientation at the asymmetric carbon atom for the nephrotoxicity induced by NDPS metabolites. Male Fischer 344 rats were administered a single intraperitoneal (ip) injection of R-(+)- or S-(-)-2-NDHSA (0.05, 0.1 or 2.0 mmol/kg) or vehicle, and renal function was monitored for 48 h. R-2-NDHSA (0.1 mmol/kg) administration had little effect on renal function. R-2-NDHSA (0.2 mmol/kg) treatment induced mild diuresis on day 1, increased proteinuria, and a small increase in blood urea nitrogen (BUN) concentration, but no change in kidney weight or glucosuria. S-2-NDHSA (0.1 mmol/kg) induced marked nephrotoxicity as evidenced by diuresis on both post-treatment days, increased proteinuria, glucosuria, and increased kidney weight and BUN concentration. No evidence of hepatotoxicity was obtained in any treated group. Thus, the S-isomer of 2-NDHSA is a more potent nephrotoxicant than the R-isomer, and stereochemistry may play a role in NDPS metabolite-induced nephrotoxicity.


Subject(s)
Fungicides, Industrial/toxicity , Kidney Diseases/chemically induced , Succinates/toxicity , Animals , Blood Urea Nitrogen , Drinking/drug effects , Eating/drug effects , Fungicides, Industrial/chemistry , Glycosuria/chemically induced , Indicators and Reagents , Kidney Diseases/pathology , Male , Molecular Conformation , Organ Size/drug effects , Rats , Rats, Inbred F344 , Stereoisomerism , Succinates/chemistry , Urodynamics/drug effects
3.
Toxicology ; 132(2-3): 127-37, 1999 Feb 15.
Article in English | MEDLINE | ID: mdl-10433376

ABSTRACT

Numerous structure-nephrotoxicity relationship studies from our laboratory have demonstrated that N-(3,5-dichlorophenyl)succinimide (NDPS) is one of the most potent nephrotoxicants among the N-arylsuccinimides. The purpose of this study was to extend our previous structure-nephrotoxicity relationship studies by examining the effect of addition of a fluoro verses a chloro group at the 4-phenyl position in NDPS. Male Fischer 344 rats (four rats/group) received a single intraperitoneal (i.p.) injection of N-(3,5-dichloro-4-fluorophenyl)succinimide (NDCFPS) or N-(3,4,5-trichlorophenyl)succinimide (NTCPS)(0.4 or 0.8 mmol/kg) or vehicle, and renal function monitored at 24 and 48 h. NDCFPS did not induce significant nephrotoxicity at either dose tested. In contrast, NTCPS (0.4 or 0.8 mmol/kg) induced marked nephrotoxicity characterized by diuresis, increased proteinuria, glucosuria, elevated kidney weight and increased blood urea nitrogen (BUN) concentration. NTCPS also induced marked proximal tubular necrosis at both doses tested. Neither NDCFPS nor NTCPS induced hepatotoxicity at either dose tested. The results of these experiments indicate that addition of a fluoro group at the 4-position on the phenyl ring of NDPS produces a nonnephrotoxicant NDPS derivative (NDCFPS), while addition of a chloro group at this site produces an NDPS derivative with similar nephrotoxic potential to NDPS. The mechanism for this differential effect between 4-halophenyl substitution is unclear, but may result from increased hydrolysis of the succinimide ring and/or increased clearance of N-arylsuccinimide metabolites when a fluoro group is added to the 4-position of the phenyl ring.


Subject(s)
Chlorobenzenes/toxicity , Fungicides, Industrial/toxicity , Kidney/drug effects , Succinimides/toxicity , Animals , Dose-Response Relationship, Drug , Kidney/physiology , Male , Rats , Rats, Inbred F344 , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...