Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38673791

ABSTRACT

Agriculture in the 21st century faces many formidable challenges with the growing global population. Increasing demands on the planet's natural resources already tax existing agricultural practices. Today, many farmers are using biochemical treatments to improve their yields. Commercialized organic biostimulants exist in the form of pyroligneous acid generated by burning agricultural waste products. Recently, we examined the mechanisms through which a commercial pyroligneous acid product, Coriphol™, manufactured by Corigin Solutions, Inc., stimulates plant growth. During the 2023 growing season, outdoor studies were conducted in soybean to examine the effects of different Coriphol™ treatment concentrations on plant growth. Plant height, number of leaves, and leaf size were positively impacted in a dose-dependent manner with 2 gallon/acre soil treatments being optimal. At harvest, this level of treatment boosted crop yield by 40%. To gain an understanding of why Coriphol™ improves plant fitness, follow-up laboratory-based studies were conducted using radiocarbon flux analysis. Here, radioactive 11CO2 was administered to live plants and comparisons were made between untreated soybean plants and plants treated at an equivalent Coriphol™ dose of 2 gallons/acre. Leaf metabolites were analyzed using radio-high-performance liquid chromatography for [11C]-chlorophyll (Chl) a and b components, as well as [11C]-ß-carotene (ß-Car) where fractional yields were used to calculate metabolic rates of synthesis. Altogether, Coriphol™ treatment boosted rates of Chl a, Chl b, and ß-Car biosynthesis 3-fold, 2.6-fold, and 4.7-fold, respectively, and also increased their metabolic turnover 2.2-fold, 2.1-fold, and 3.9-fold, respectively. Also, the Chl a/b ratio increased from 3.1 to 3.4 with treatment. Altogether, these effects contributed to a 13.8% increase in leaf carbon capture.


Subject(s)
Glycine max , Plant Leaves , Glycine max/metabolism , Glycine max/growth & development , Plant Leaves/metabolism , Plant Leaves/growth & development , Carbon Radioisotopes , Plant Development , Soil/chemistry , Chlorophyll/metabolism
2.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958493

ABSTRACT

The effect of high-temperature (HT) stress on nicotine biosynthesis in Nicotiana attenuata was examined. Nicotine content was measured in mature leaves, young sink leaves, and in roots from well-watered plants grown at 25 °C as controls and from plants exposed to 38 °C and 43 °C temperatures applied for 24, 48, 72, and 96 h duration. At 38 °C, all leaf nicotine levels were significantly less than control plants for up to 72 h exposure but rose sharply thereafter to levels significantly greater than controls with 96 h exposure. In contrast, plants exposed to 43 °C never exhibited a reduction in leaf nicotine content and showed an increase in content with just 48 h exposure. Using radioactive 11CO2 and 13NO3-, we found that HT stress reduced both CO2 fixation and nitrate uptake. Furthermore, radiocarbon flux analysis revealed that 'new' carbon partitioning (as 11C) into the 11C-radiolabeled amino acid (AA) pool was significantly reduced with HT stress as were yields of [11C]-aspartic acid, an important AA in nicotine biosynthesis, and its beta-amido counterpart [11C]-asparagine. In contrast, [12C]-aspartic acid levels appeared unaffected at 38 °C but were elevated at 43 °C relative to controls. [12C]-Asparagine levels were noted to be elevated at both stress temperatures. Since HT reductions in carbon input and nitrogen uptake were noted to impede de novo AA biosynthesis, protein degradation at HT was examined as a source of AAs. Here, leaf total soluble protein (TSP) content was reduced 39% with long exposures to both stress temperatures. However, Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) which was 41% TSP appeared unaffected. Altogether, these results support the theory that plant proteins other than Rubisco degrade at elevated temperatures freeing up essential AAs in support of nicotine biosynthesis.


Subject(s)
Nicotiana , Nicotine , Nicotiana/metabolism , Nicotine/metabolism , Hot Temperature , Ribulose-Bisphosphate Carboxylase/metabolism , Carbon Dioxide/metabolism , Asparagine/metabolism , Aspartic Acid/metabolism , Photosynthesis , Carbon , Plant Leaves/metabolism
3.
Microorganisms ; 11(7)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37512900

ABSTRACT

As the use of microbial inoculants in agriculture rises, it becomes important to understand how the environment may influence microbial ability to promote plant growth. This work examines whether there are light dependencies in the biological functions of Azospirillum brasilense, a commercialized prolific grass-root colonizer. Though classically defined as non-phototrophic, A. brasilense possesses photoreceptors that could perceive light conducted through its host's roots. Here, we examined the light dependency of atmospheric biological nitrogen fixation (BNF) and auxin biosynthesis along with supporting processes including ATP biosynthesis, and iron and manganese uptake. Functional mutants of A. brasilense were studied in light and dark environments: HM053 (high BNF and auxin production), ipdC (capable of BNF, deficient in auxin production), and FP10 (capable of auxin production, deficient in BNF). HM053 exhibited the highest rate of nitrogenase activity with the greatest light dependency comparing iterations in light and dark environments. The ipdC mutant showed similar behavior with relatively lower nitrogenase activity observed, while FP10 did not show a light dependency. Auxin biosynthesis showed strong light dependencies in HM053 and FP10 strains, but not for ipdC. Ferrous iron is involved in BNF, and a light dependency was observed for microbial 59Fe2+ uptake in HM053 and ipdC, but not FP10. Surprisingly, a light dependency for 52Mn2+ uptake was only observed in ipdC. Finally, ATP biosynthesis was sensitive to light across all three mutants favoring blue light over red light compared to darkness with observed ATP levels in descending order for HM053 > ipdC > FP10.

4.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293325

ABSTRACT

Many higher plants possess a physiological organization that is based upon the carbon economy of their parts. While photosynthates are partitioned according to the relative strength of the plant's sink tissues, in many species there is also a very close relationship between partitioning, phyllotaxy and vascular connectivity giving rise to sectorial patterns of allocation. Here, we examined the influence of smoke and certain chemical constituents prevalent in smoke including, catechol, resorcinol and hydroquinone on phloem vascular sectoriality in common sunflower (Helianthis annuus L.), as a model plant for sectoriality. By administering radioactive carbon-11 to a single source leaf as 11CO2, 11C-photosynthate allocation patterns were examined using autoradiography. A 1:200 aqueous dilution of liquid smoke treated soil caused 2.6-fold and 2.5-fold reductions in phloem sectoriality in sink leaves and roots, respectively. Treatment with catechol (1,2-d ihydroxybenzene) or resorcinol (1,3-dihydroxybenzene), polyphenolic constituents that are prevalent in smoke, caused similar reductions in phloem sectoriality in the same targeted sink tissues. However, treatment with hydroquinone (1,4-dihydroxybenzene) had no effect. Finally, the longer-term effects of smoke exposure on plant growth and performance were examined using outdoor potted plants grown over the 2022 season. Plants exposed to liquid smoke treatments of the soil on a weekly basis had larger thicker leaves possessing 35% greater lignin content than untreated control plants. They also had thicker stems although the lignin content was the same as controls. Additionally, plants exposed to treatment produced twice the number of flowers with no difference in their disk floret diameters as untreated controls. Altogether, loss of phloem sectoriality from exposure to liquid smoke in the sunflower model benefited plant performance.


Subject(s)
Helianthus , Phloem , Hydroquinones , Carbon Dioxide , Smoke , Lignin , Plant Leaves/physiology , Carbon , Soil , Catechols , Resorcinols
SELECTION OF CITATIONS
SEARCH DETAIL
...