Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(23): 9860-9873, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29148769

ABSTRACT

Monoacylglycerol lipase (MAGL) is the main enzyme responsible for degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the CNS. MAGL catalyzes the conversion of 2-AG to arachidonic acid (AA), a precursor to the proinflammatory eicosannoids such as prostaglandins. Herein we describe highly efficient MAGL inhibitors, identified through a parallel medicinal chemistry approach that highlighted the improved efficiency of azetidine and piperidine-derived carbamates. The discovery and optimization of 3-substituted azetidine carbamate irreversible inhibitors of MAGL were aided by the generation of inhibitor-bound MAGL crystal structures. Compound 6, a highly efficient and selective MAGL inhibitor against recombinant enzyme and in a cellular context, was tested in vivo and shown to elevate central 2-AG levels at a 10 mg/kg dose.


Subject(s)
Azetidines/pharmacology , Carbamates/pharmacology , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Piperidines/pharmacology , Animals , Azetidines/chemistry , Azetidines/pharmacokinetics , Carbamates/chemistry , Carbamates/pharmacokinetics , Cell Line , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Mice, Inbred C57BL , Models, Molecular , Monoacylglycerol Lipases/metabolism , Piperidines/chemistry , Piperidines/pharmacokinetics , Recombinant Proteins/metabolism
2.
J Med Chem ; 58(1): 419-32, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25353650

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson's disease (PD) by genome-wide association studies (GWAS). The most common LRRK2 mutation, G2019S, which is relatively rare in the total population, gives rise to increased kinase activity. As such, LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the discovery and optimization of a novel series of potent LRRK2 inhibitors, focusing on improving kinome selectivity using a surrogate crystallography approach. This resulted in the identification of 14 (PF-06447475), a highly potent, brain penetrant and selective LRRK2 inhibitor which has been further profiled in in vivo safety and pharmacodynamic studies.


Subject(s)
Nitriles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteome/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrroles/pharmacology , Amino Acid Sequence , Animals , Area Under Curve , Brain/metabolism , Crystallography, X-Ray , Drug Discovery , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Inbred C57BL , Mice, Transgenic , Models, Molecular , Molecular Sequence Data , Molecular Structure , Mutation, Missense , Nitriles/chemistry , Nitriles/pharmacokinetics , Parkinson Disease/drug therapy , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein Structure, Tertiary , Proteome/chemistry , Proteome/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Rats
3.
Bioorg Med Chem Lett ; 24(17): 4132-40, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25113930

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) has been genetically linked to Parkinson's disease (PD). The most common mutant, G2019S, increases kinase activity, thus LRRK2 kinase inhibitors are potentially useful in the treatment of PD. We herein disclose the structure, potential ligand-protein binding interactions, and pharmacological profiling of potent and highly selective kinase inhibitors based on a triazolopyridazine chemical scaffold.


Subject(s)
Heterocyclic Compounds, 2-Ring/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Pyridazines/pharmacology , Triazoles/pharmacology , Crystallography, X-Ray , Dose-Response Relationship, Drug , Heterocyclic Compounds, 2-Ring/chemical synthesis , Heterocyclic Compounds, 2-Ring/chemistry , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary/drug effects , Pyridazines/chemical synthesis , Pyridazines/chemistry , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...